Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Đường cao AA’ cắt (O;R) tại D (khác A).Từ D vẽ đường thẳng song song với BC cắt (O) tại E (khác D).
a) Chứng minh tứ giác BCED là một hình thang cân.
b) Chứng minh \(A'A.A'D=A'B.A'C\)
c) Trên đoạn AA’ lấy điểm H sao cho A’ là trung điểm của HD. Chứng minh H là trực tâm của tam giác ABC.
d) Chứng minh 3 điểm A,O,E thẳng hàng. Tính \(AB^2+BD^2+DC^2+CA^2\) theo R.
N D B A' A O C
a) Vẽ OM \(\perp\)BC ( M \(\in\)BC )
OM cắt DE tại N
DE// BC ( gt ) có ON \(\perp\)DE ,tứ giác BCDE là hình thang
OM \(\perp\)BC => M là trung điểm của BC
ON\(\perp\)DE => N là trung điểm của DE
MN là trục đối xứng của hình thang cân=> đpcm
d) 1)BC //DE ( dt) , AD \(\perp\)BC ( gt )
=> AD\(\perp\)DE
góc ADE = 90 độ => AE là đường kính của đường tròn ( O)
=> A,O,E thẳng hàng ( đpcm )
2) BE = CD ( BECD là hình thang cân )
AE là đường kính nên góc ABE = 90 độ
Tam giác ABE vuông tại E ,theo định lí PI-ta- go có :
AB2 + BE2 = OE2
AB2 + CD2 =( 2.R)2
AB2 + CD2 =4R2
Chứng minh tương tự ,ta có : AC2 + BD2 =4R2
Ta có : AB2 + BD2 + CD2 + AC2 = 8.R2
Câu a)
Vì DE=BC nên: sđ cung BD=sđ cung CE
\(\Rightarrow\)sđ cung BE=sđ cung CD
\(\Leftrightarrow\widehat{BCE}=\widehat{DBC}\)
Tứ giác BCED có DE//BC nên BCED là hình thang
Mà \(\widehat{BCE}=\widehat{DBC}\Rightarrowđpcm\)
Câu b)
Vì ABDC là tứ giác nội tiếp nên: \(\widehat{ABA'}=\widehat{CDA'}\)
Xét \(\Delta ABA'\)và \(\Delta CDA'\)có
+\(\widehat{ABA'}=\widehat{CDA'}\)
+\(\widehat{AA'B}=\widehat{CA'B}\)
Do đó 2 tam giác đó đồng dạng
\(\Rightarrow\frac{AA'}{A'C}=\frac{A'B}{A'D}\)\(\Rightarrowđpcm\)
Câu c)
Gọi giao BH với AC là B'
Tam giác BHD có BA' vừa là đường cao và vừa là đường trung tuyến
nên tam giác BHD cân tại B
\(\Rightarrow\widehat{BHD}=\widehat{BDA}\)
\(\Leftrightarrow\widehat{AHB'}=\widehat{BDA}\)
\(\Leftrightarrow\widehat{AHB'}+\widehat{DAC}=\widehat{BDA}+\widehat{DAC}=\widehat{BDA}+\widehat{DBC}=90^o\)
\(\Leftrightarrow BB'\perp AC\)
Tam giác ABC có H là giao 2 đường cao AA' và BB'
Vậy H là trực tâm của tam giác ABC
Câu d)
Ý 1:
Có: DE//BC mà AD vuông góc BC
Suy ra: AD vuông góc DE
nên tam giác ADE vuông tại D
Suy ra: AE là đường kình đường tròn ngoại tiếp tam giác ADE
Vậy A,O,E thẳng hàng
Ý 2:
Vì BCED là hình thang cân nên:
\(\hept{\begin{cases}BE=CD\\BD=CE\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}BE^2=CD^2\\BD^2=CE^2\end{cases}\Leftrightarrow}\hept{\begin{cases}CD^2+AB^2=BE^2+AB^2=AE^2=4R^2\\AC^2+BD^2=AC^2+CE^2=AE^2=4R^2\end{cases}}\)
Cộng lại sẽ tích đc tổng đó theo R
Hình vẽ:(không biết nó có hiện ra không nên bạn thông cảm)