Chứng minh : 1/22 + 1/23 + 1/24 + ...+ 1/2n < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)
Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40
1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)
A>1/40x20=1/2
A>1/20 (1)
Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40
1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40
1/21x20>A
20/21>A.Mà 1>20/21
1>A (2)
Từ (1) và (2) ta có : 1/2<A<1(đpcm)
Vậy bài tôán đđcm
\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng \(\)
\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng
\(\frac{1}{21}>\frac{1}{40}\)
\(\frac{1}{22}>\frac{1}{40}\)
\(.....\)
\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)
\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng
\(\Rightarrow\frac{1}{2}< A< 1\)
ta có :
1/2=1/40+1/40+....+1/40 (20 số hạng)
1/21+1/22+1/23....+1/40(có 20 số hạng)
vì 1/21>1/40
1/22>1/40
..........
1/39>1/40
1/40=1/40
=>A<1/2
A<1 chịu
Ta có
\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)
Mà số phần từ của A là 20
\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)
Còn chứng minh bé hơn 1 thì tương tự bạn nhé!
Đặt \(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}\)
\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+..+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)
\(\Rightarrow A>20.\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{39.40}\right)+40.\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)
\(A>20\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+40\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{5}{6}>\frac{11}{15}\)
Mặt khác : \(A< 40\cdot\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{38.40}\right)+60\cdot\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)
\(A< 40\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+60\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{3}{2}\)
Vậy ....
Đặt A=1/21+1/22+...+1/60=(1/21+1/22+...+1/40)+(1/41+1/42+...+1/60)
Ta có:1/21>1/40, 1/22>1/40,..., 1/39>1/40
=>1/21+1/226+...+1/40>1/40+1/40+...+1/40=1/40.20=1/2
1/41>1/60, 1/42>1/60,...,1/59>1/60
=>1/41+1/42+...+1/60>1/60+1/60+...+1/60=1/60.20=1/3
=>1/21+1/22+...+1/60>1/2+1/3=5/6>11/15
=>A>11/15 (1)
Lại có: 1/21<1/20, 1/22<1/20,...,1/40<1/20
=>1/21+1/22+...+1/40<1/20+1/20+...+1/20=1/20.20=1
1/41<1/40, 1/42<1/40,...,1/60<1/40
=>1/41+1/42+...+1/60<1/40+1/40+...+1/40=1/40.20=1/2
=>1/21+1/22+...+1/60<1+1/2=3/2
=>A<3/2 (2)
Từ (1) và (2)
=>11/15<A<3/2
=>11/15<1/21+1/22+...+1/60<3/2 (đpcm)
1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105) Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên 1/21+1/22+1/23+1/24+1/25<5×1/20<1/4 Tương tự 1/101+1/102+1/103+1/104+1/105<5×1/100<1/20 1/5+1/20+1/20=6/20=3/10 1/5+(<1/4)+(<1/20)<1/2 1/2=5/10 3/10<5/10 vậy suy ra điều cần chứng minh
\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}< 1\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+...+\frac{1}{2^{n+1}}\)
\(\Rightarrow A-\frac{1}{2}A=\frac{1}{2^2}-\frac{1}{2^{n+1}}=\frac{2^{n+1}-4}{2^{n+3}}\)
\(\Rightarrow A=\frac{2^{n+1}-4}{2^{n+3}.2}=\frac{2^{n+1}-4}{2^{n+4}}< 1\)
\(\RightarrowĐPCM\)