K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020
https://i.imgur.com/9wb6VDD.jpg
25 tháng 3 2020

a)\(\left(-x^2y^5\right)^2:\left(-x^2y^5\right)=\left(-x^2y^5\right)\)

b)\(5\cdot\left(x-2y\right)^3:\left(5x-10y\right)\)

\(=5\cdot\left(x-2y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)

\(=\left(5x-10y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)

\(=\left(x-2y\right)^2\)

Thay \(x=\frac{1}{2},y=1\) vào:

\(\left(\frac{1}{2}-2\cdot1\right)^2=\left(\frac{-3}{2}\right)^2=\frac{9}{4}\)

17 tháng 6 2017

chiều mai bn nộp thì làm luôn đi còn hỏi đáp nữa !!!!!!

17 tháng 6 2017

mình làm bài 2 trước nha:

a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y

                        =(a.y+a.y)-(b.y+b.y)

                         =2.a.y-2.b.y

                        =2.y.(a-b)

b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3

a) Ta có: \(A=5xy-y^2+xy+4xy+3x-2y\)

\(=10xy-y^2+3x-2y\)

b) Ta có: \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\)

\(=\frac{-1}{3}x^4y^2\)(*)

Thay x=2 và \(y=\frac{1}{4}\) vào biểu thức (*), ta được:

\(\frac{-1}{3}\cdot2^4\cdot\left(\frac{1}{4}\right)^2\)

\(=\frac{-1}{3}\cdot16\cdot\frac{1}{16}=\frac{-1}{3}\)

Vậy: \(-\frac{1}{3}\) là giá trị của biểu thức \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\) tại x=2 và \(y=\frac{1}{4}\)

25 tháng 3 2022

a) A\(=\dfrac{1}{5}x^2y^5-\dfrac{11}{5}x^2y^5+\dfrac{7}{2}x^2y^5-2\)

A\(=\) \(\left(\dfrac{1}{5}-\dfrac{11}{5}+\dfrac{7}{2}\right)x^2y^5\) \(-2\)

A\(=\dfrac{3}{2}x^2y^5-2\)

Tại \(x=-1;y=1\) ta có:

A\(=\dfrac{3}{2}.\left(-1\right)^2.1^5-2\) \(=\dfrac{3}{2}.1.1-2=\dfrac{3}{2}-2=-\dfrac{1}{2}\)

Vậy tại \(x=-1;y=1\) biểu thức A là \(-\dfrac{1}{2}\)

 

 

25 tháng 3 2022

b) B\(=\left(-9x^3y\right).\left(-2xy^3\right).\dfrac{1}{6}yz^3\)

   B\(=\left(-9-2.\dfrac{1}{6}\right).\left(x^3.x\right).\left(y.y^3.y\right).z^3\)

   B\(=-\dfrac{28}{3}x^4y^5z^3\)

- Hệ số: \(-\dfrac{28}{3}\)

- Phần biến: \(x^4y^5z^3\)

- Bậc của đơn thức là 12

NV
22 tháng 6 2019

\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)

\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)

\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)

\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)

\(=\left(-1\right)^{2018}+2018=2019\)

5 tháng 7 2020

a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2\)

b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)

\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)

\(=x^3+x^2+x-x^2-x-1+x^3-2\)

\(=2x^3-3\)

c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2+xy-yx-y^2-2x^2+2xy\)

\(=-x^2-y^2+2xy\)

a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)

b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)

\(=x^3-1+x^3-2=2x^3-3\)

c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)

15 tháng 10 2023

a) x=3 ; y=8
b) x=4 ; y=0
c) x=3 ; y=0
d) x=3 ; y=0

10 tháng 4 2020

Tí ăn xong giải tiếp

10 tháng 4 2020

Câu 3a này cái cuối là 1/2018.2020 mới đúng chứ