Tìm các số tự nhiên N sao cho các phân số sau có giá trị nguyên:
a) n+4/n
b) n-2/4
c) 6/n-1
d) n/n-2
nhanh nhé các bạn cám ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số nguyên x sao cho các phân số sau có giá trị là một số nguyên:
a)n+4/1
b)n-2/4
c)6/n-1
d)n/n-2
a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên
b) \(\dfrac{n-2}{4}\) là một số nguyên khi:
\(n-2\) ⋮ 4
⇒ n - 2 ∈ B(4)
⇒ n ∈ B(4) + 2
c) \(\dfrac{6}{n-1}\) là một số nguyên khi:
6 ⋮ n - 1
\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)
d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)
Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:
\(\Rightarrow\text{2}\) ⋮ n - 2
\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0\right\}\)
a: A nguyên
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}
b: B nguyên
=>2n+3 chia hết cho 7
=>2n+3=7k(k\(\in Z\))
=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)
c: C nguyên
=>2n+5 chia hết cho n-3
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;12;-8}
1. Để P là số nguyên tố thì một trong 2 thừa số ( n - 2 ) hoặc ( n2 + n - 5 ) một số là số nguyên tố và một số là 1
Vì nếu không có một số bằng 1 thì P là hợp số
TH1 : Nếu ( n - 2 ) = 1 thì n = 3
=> P = ( 3 - 2 ) . ( 32 + 3 - 5 ) = 1. ( 9 + ( -2 )= 1 .7 = 7 thoã mãn đề bài
TH2 : Nếu ( n2 + n - 5 ) = 1 thì n = 2
=> P = ( 2 - 2 ) . ( 22 + n - 5 ) = 0 .( 22 + n - 5 ) = 0 không thoã mãn đề bài
Vậy n = 3
2. Số số hạng của dãy số đó là : ( n - 1 ) : 1 + 1 = n
Tổng của dãy số đó là :
( n +1 ) . n : 2 = 20301
=> ( n + 1 ) . n = 40602
mà 202 . 201 = 40602
Vậy n = 201
Nhớ tk cho mình nhé ! OK
a: Để A là số tự nhiên thì n-6+15 chia hết cho n-6
=>\(n-6\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
mà n>6
nên \(n\in\left\{7;9;11;21\right\}\)
b: \(A=\dfrac{n-6+15}{n-6}=1+\dfrac{15}{n-6}\)
Để A là phân số tối giản thì ƯCLN(n-9;n-6)=1
=>ƯCLN(15;n-6)=1
=>n-6<>3k và n-6<>5k
=>\(n\notin\left\{3k+6;5k+6\right\}\)