K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong tam giác ABC có AH = 1/2 BC.  Đường cao ứng với cạnh huyền và bằng 1/2 => tam giác ABC vuông tại góc A

Lại có góc  A = 90 độ , góc C = 75 độ 

Trong tam giác tổng 3 góc là 180 độ 

=> góc B = 180 - góc A - góc C

                =  180-90-75

                 = 15 độ

Vậy........ 

27 tháng 7 2023

Ai hộ mình với ạ ._.

27 tháng 7 2023

Xét Δ vuông ABH ta có :

\(tanB=\dfrac{BH}{AH}\Rightarrow BH=AH.tanB\)

Xét Δ vuông ACH ta có :

\(tanC=\dfrac{CH}{AH}\Rightarrow CH=AH.tanC\)

Ta lại có :

\(BC=BH+CH\)

\(\Leftrightarrow2AH=AH.tanB+AH.tanC\left(AH=\dfrac{1}{2}BC\right)\)

\(\Leftrightarrow2AH=AH.\left(tanB+tanC\right)\)

\(\Leftrightarrow tanB+tanC=2\)

\(\Leftrightarrow tanC=2-tanB=2-tan75^o=2-3,73=-1,73\)

\(\Leftrightarrow C=-60^o\) (theo góc lượng giác)

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

a: sin ACB=AH/AC

=>AH/AC=1/2

=>AH=4cm

b: sin ABC=2/3

=>AH/AB=2/3

=>AB=6cm

HB=căn 6^2-4^2=2căn  5cm

HC=căn 8^2-4^2=4căn  3cm

BC=HB+HC=2căn5+4căn3(cm)

S ABC=1/2*BA*BC*sinB

=1/2*1/2*6*(2căn5+4căn3)

=3(căn 5+2căn 3)

26 tháng 7 2016

ko biết. k mik nha

26 tháng 7 2016

Khánh Huyền k mik nha

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=40(cm)

Xét ΔABH vuông tại H có 

\(\tan\widehat{B}=\dfrac{AH}{HB}=\dfrac{40}{25}=\dfrac{8}{5}\)

\(\Leftrightarrow\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)