K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)

\(=\left(sin^215^o+cos^215^o\right)+...\)

\(=1\cdot3=3\)

Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ

Nói chung nếu: a+b=90 độ

thì: \(sin^2a+sin^2b=1\)

b) thì áp dụng nếu a+b=90 độ:

\(tana=cotb\) và ngược lại

\(tana\cdot cota=1\)

Nói chung là công thức......

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(A = \cos {75^0}\cos {15^0} = \frac{1}{2}\left[ {\cos \left( {{{75}^0} - {{15}^0}} \right) + \cos \left( {{{75}^0} + {{15}^0}} \right)} \right] \\= \frac{1}{2}.\cos {60^0}.\cos {90^0} = 0\)

\(B = \sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}} = \frac{1}{2}\left[ {\sin \left( {\frac{{5\pi }}{{12}} - \frac{{7\pi }}{{12}}} \right) + \sin \left( {\frac{{5\pi }}{{12}} + \frac{{7\pi }}{{12}}} \right)} \right] \\= \frac{1}{2}\sin \left( { - \frac{{2\pi }}{{12}}} \right).\sin \left( {\frac{{12\pi }}{{12}}} \right) =  - \frac{1}{2}\sin \frac{\pi }{6}\sin \pi  = 0\)

18 tháng 8 2017

Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)

a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)

b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)

27 tháng 10 2023

a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)

\(=a\cdot0+b\cdot1+c\cdot1\)

=b+c

b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)

\(=a\cdot0+b\cdot1+c\cdot0\)

=b

c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)

\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)

\(=a^2-c^2\)

a: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0+\sin^260^0\right)+\left(\sin^240^0+\sin^250^0\right)\)

=1+1+1+1

=4

b: \(=\left(\cos^25^0+\cos^285^0\right)+\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

\(=1+1+1+1+\dfrac{1}{2}=4+\dfrac{1}{2}=\dfrac{9}{2}\)

24 tháng 9 2023

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)

22 tháng 7 2018

Bài 1 :

\(D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)

\(=\left(cos^220^0+cos^270^0\right)+\left(cos^230^0+cos^260^0\right)+\left(cos^240^0+cos^250^0\right)\)

\(=1+1+1=3\)

Bài 2 :

\(E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)

\(=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

Bài 3 :

\(F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2a.cos^2\alpha\)

\(=1\)