1) Tìm x,y nguyên
a) \(x^2+2014x+2015y^2+y=xy+2015xy^2+2016\)
b) \(y^4=x^6+3x^3+1\) (x,y không âm)
2) Giải và biện luận phương trình là gì? bạn nào biết thì nói cho mình nhé! Cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:PT $\Leftrightarrow x^2+x(y-2014)-(2015y+2016)=0$
Coi đây là PT bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(y-2014)^2+4(2015y+2016)=t^2$ với $t\in\mathbb{N}$
$\Leftrightarrow y^2+4032y+4064260=t^2$
$\Leftrightarrow (y+2016)^2+4=t^2$$\Leftrightarrow 4=(t-y-2016)(t+y+2016)$
Đến đây thì đơn giản rồi thì đây là dạng phương trình tích.
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)