Cho biết hai phương trình tương đương là hai phương trình có cùng tập hợp nghiệm. Hãy tìm giá trị của m để hai phương tình sau tương đương:
- \(\frac{x+1}{2017}\)+\(\frac{x+3}{2019}\)=\(\frac{x+5}{2021}\)+\(\frac{x+7}{2023}\)
- 2x - 5m = 3(x - 3m)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{{x - 1}}{{x + 1}}\;\)xác định khi \(x + 1 \ne 0 \Leftrightarrow x \ne - 1\)
\(\frac{{x - 1}}{{x + 1}} = 0 \Leftrightarrow x - 1 = 0 \Leftrightarrow x = 1\;\)
Tập nghiệm của phương trình là \({S_1} = \left\{ 1 \right\}\)
\({x^2} - 1 = 0 \Leftrightarrow {x^2} = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - 1}\end{array}} \right.\;\)
Tập nghiệm của phương trình là \({S_2} = \left\{ {1; - 1} \right\}\)
Vậy tập nghiệm của 2 phương trình là không tương đương nhau
\(\Leftrightarrow\dfrac{x+10}{2012}+1+\dfrac{x+8}{2014}+1+\dfrac{x+6}{2016}+1+\dfrac{x+4}{2018}+1=0\)
\(\Leftrightarrow\dfrac{x+2022}{2012}+\dfrac{x+2022}{2014}+\dfrac{x+2022}{2016}+\dfrac{x+2022}{2018}=0\Leftrightarrow x=-2022\)
do 2 pt tương đường nhau nên x = -2022 cũng là nghiệm của pt
\(\left(m-1\right)x+2020m-6=0\)
thay vào ta được : \(-2022\left(m-1\right)+2020m-6=0\)
\(\Leftrightarrow-2m+2022-6=0\Leftrightarrow-2m=-2016\Leftrightarrow m=1008\)
a: Để đây là phương trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 7-4x=2x-5
=>-6x=-12
hay x=2
Thay x=2 vào (1), ta được:
2(m-2)+3=5
=>2m-4=2
=>2m=6
hay m=3(nhận)