K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)

\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)

\(=2.6^2-6.12=0\)

Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)

17 tháng 3 2020

Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath

11 tháng 9 2020

Ta có : \(a+b+c=6\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)

\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)

Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Khi đó biểu thức :

\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

Lời giải:

Đặt $\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k$

$\Rightarrow a=2012k; b=2013k; c=2014k$. Khi đó:

$A=4(a-b)(b-c)(c-a)=4(2012k-2013k)(2013k-2014k)(2014k-2012k)$

$=4(-k)(-k)(2k)=8k^3$

20 tháng 10 2017

Ta có:

\(a+b+c+ab+bc+ca=6\)

\(\Leftrightarrow12-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Rightarrow a=b=c=1\)

\(\Rightarrow Q=\frac{1^{22}+1^{12}+1^{1994}}{1^{22}+1^{12}+1^{2013}}=\frac{3}{3}=1\)

21 tháng 11 2017

vào máy tính bấm sẽ ra đáp án = 1

NV
16 tháng 3 2019

\(a^{2013}+b^{2013}=a^{2012}+b^{2012}\Rightarrow a^{2012}\left(a-1\right)+b^{2012}\left(b-1\right)=0\) (1)

\(a^{2014}+b^{2014}=a^{2013}+b^{2013}\Rightarrow a^{2013}\left(a-1\right)+b^{2013}\left(b-1\right)=0\) (2)

Trừ vế cho vế của (2) cho (1):

\(\left(a-1\right)\left(a^{2013}-a^{2012}\right)+\left(b-1\right)\left(b^{2013}-b^{2012}\right)=0\)

\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^{2012}\left(a-1\right)^2=0\\b^{2012}\left(b-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\) \(\Rightarrow a=b=1\) (do \(a;b>0\))

\(\Rightarrow P=1+1=2\)

16 tháng 3 2019

Nguyễn Việt Lâm

6 tháng 10 2019

Sử dụng BDT Cauchy dễ dàng CM được: \(ab+bc+ac\le a^2+b^2+c^2=3\)

->\(a+b+c\ge3\)(1)

Tiếp  tục sử dụng BDT Cauchy CM được:\(a^2+b^2+c^2+3\ge2a+2b+2c\Leftrightarrow a^2+b^2+c^2=3\ge a+b+c\)(2)

Từ (1),(2) -> a+b+c=3. Dấu = xảy ra khi a=b=c=1. Thay vào ta tính được B=1

7 tháng 10 2019

a, b, c là số thực sao có thể sử dụng bất đẳng thức Cauchy đc???

Em tham khảo bài làm : Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath