Bài 10. Cho tam giác ABC cân tại A. A=110 . Trên cạnh BC lấy điểm D, biết rằng ADC=105.
Từ C kẻ đường thẳng song song với AD cắt tia BA tại E. Chứng minh rằng:
a) AE < CA = CE
b) EC = BC = BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌnh bạn tự vẽ nha.
Xét \(\Delta\) ABC cân tại A có : góc A + 2 góc B = 180 độ
Mà góc A =110 độ (gt)
\(\Rightarrow\)Góc B = 35 độ
Xét \(\Delta\) ABD có : góc BAD + góc B + ADC = 180 độ
Mà góc B = 35 độ (cmt) , ADC = 105 độ
\(\Rightarrow\)BAD = 180-35-105=40 độ
Mà CE // AD (gt)
\(\Rightarrow\)Góc E bằng 40 độ ( 2 góc đồng vị )
Xét \(\Delta\)BCE có : góc E + góc B + BCE = 180 độ (đ/l)
Mà E = 40 độ (cmt) , B = 35 độ (cmt)
\(\Rightarrow\)BCE = 180-40-35=105 độ
\(\Rightarrow\)BCE>E>B (105>40>35)
\(\Rightarrow\)BE>BC>CE (Quan hệ giữa cạnh và góc đối diện )
Hay EC<BC<BE
_HT_
I don't now
mik ko biết
sorry
......................
A)
xét tam giác ABC và tam giác ADC
có : góc ADC = góc ABC
AB=AD ( tia đối )
AC chung
=> tam giác ABC = tam giác ADC (c-g-c)
=> góc ACB = góc ACD
=> AC LÀ phân giác góc BCD
b)
ý 2 câu b : cm DC//AE
có tam giác ABC vuông tại A
mà AM là đường trung tuyến
=> AM=MC
=> tam giác AMC cân tại M
=> góc MAC = góc MCA ( tam giác cân )
mà góc MCA = góc ACD ( phân giác )
=> MAC = góc ACD
mà 2 góc này vị trí so le trong
=> DC//AE