K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Đặt \(\hept{\begin{cases}n+1=a^2\\4n+29=b^2\end{cases}\left(a;b\inℕ\right)\Rightarrow\hept{\begin{cases}4n+4=4a^2\\4n+29=b^2\end{cases}}}\)

=> 4n+29-4n-4=b2-4a2

=> 25=(b-2a)(b+2a)

Vì a,b là số tự nhiên => \(\hept{\begin{cases}b-2a;b+2a\inℤ\\b-2a\le b+2a\end{cases}}\)

\(\Rightarrow\left(b-2a;b+2a\right)\inƯ\left(25\right)=\left\{\left(-25;-1\right);\left(-5;-5\right);\left(1;25\right);\left(5;5\right)\right\}\)

Lấy vế cộng vế ta được

\(2b\in\left\{-26;-10;26;10\right\}\)

\(\Rightarrow b\in\left\{-13;-5;13;5\right\}\)

Mà b là số tư nhiên nên b={13;5}

Với b=13

\(\Rightarrow4n+29=13^3=169\)

=> 4n=140

=> n=35 => n+1=36=62

Với b=5

=> \(4n+29=5^2=25\)

=> 4n=-4

=> n=-1

=> n+1=-1+1=0

Vậy với n={35;-1} thì n+1; 4n+29 là số chính phương

2 tháng 8 2023

 Đặt \(n+1=k^2\left(k\inℕ,k\ge2\right)\) (1) và \(4n+29=l^2\left(l\inℕ,l\ge6\right)\) (2)

(1) \(\Leftrightarrow4n+4=4k^2\) (3)

Từ (2) và (3) \(\Rightarrow l^2-4k^2=25\) \(\Leftrightarrow\left(l-2k\right)\left(l+2k\right)=25\)

Do \(l+2k>0\Rightarrow l-2k>0\). Lại có \(l-2k< l+2k\) nên ta có

\(\left\{{}\begin{matrix}l-2k=1\\l+2k=25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=6\\l=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n+1=36\\4n+29=169\end{matrix}\right.\) \(\Leftrightarrow n=35\) (thỏa)

Vậy \(n=35\) là số nguyên dương duy nhất thỏa mãn ycbt.

 

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

18 tháng 3 2020

Bạn tham khảo tại đây nhé!

Câu hỏi của Nguyễn Khắc Hoàng Quân - Toán lớp 6 - Học toán với OnlineMath