cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn tâm O. Kẻ các tiếp tuyến tại B, tại C của đường tròn tâm O, 2 tiếp tuyến cắt nhau tại D
a/ CM: DBOC là tứ giác nội tiếp
b/ Qua D kẻ đường thẳng song song với AB cắt (O) tại E và F ( E thuộc cung nhỏ BC) EF cắt AC tại H, Chứng minh OH vuông góc với DF
c/EF cắt BC tại I. Chứng minh ID.IH=IE.IF
ko cần vẽ hình và giải câu a
b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)
mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)
\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp
\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)
câu c tí nữa làm :P
c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD
Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)
Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)
\(\Rightarrow ID.IH=IE.IF\)