K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

W.L.O.G:  \(a\ge b\ge c\Rightarrow2\ge a\ge\frac{a+b+c}{3}=1\Rightarrow\left(a-2\right)\left(a-1\right)\le0\)

\(\therefore a^2+b^2+c^2\le a^2+\left(b+c\right)^2=2\left(a-1\right)\left(a-2\right)+5\le5\)

Equality holds when \(\left(a;b;c\right)=\left(2;1;0\right)\) and ..

17 tháng 3 2020

Ta có: a2 + b2 > 2ab, b2 + c2 > 2bc, c2 + a2 > 2ca

=> 2(a2 + b2 + c2) >= 2(ab + bc + ca)

=>3(a2 + b2 + c2) >= (a + b + c)2

=> a2 + b2 + c2 >= \(\frac{\text{(a + b + c)}^2}{3}\)

=> a2 + b2 + c2 >= 3

Dâu = xảy ra khi: a = b = c = 1

7 tháng 5 2020

Bằng 0=

10 tháng 3 2018

1) Đặt P = (a-1)/a +(b-1)/b+(c-4)/c 
Dễ thấy P = 3 - (1/a + 1/b + 4/c) 
Áp dụng BĐT Bu-nhi-a-cốp-xki : 
(1/a + 1/b + 4/c)(a + b + c) <= [căn(1/a).căn a + căn(1/b).căn b + căn(4/c).căn c]^2 = (1 + 1 + 2)^2 = 16 
=> 1/a + 1/b + 4/c <= 16/6 = 8/3 

Suy ra : P >= 3 - 8/3 = 1/3 
Min P = 3 <=> a = b = 3/2 và c = 3 


2) Đặt P = (a+1)/[√(a⁴+a+1) -a²] = {(a + 1).[√(a⁴+a+1) + a²]} / (a^4 + a + 1 - a^2) = (a + 1).[√(a⁴+a+1) + a²]/(a + 1) = √(a⁴+a+1) + a² (nhân liên hợp) 
Ta có : 4a^2 + a√2 -√2 = 0 
=> a^2 = (√2 - a√2)/4 = (1 - a)/(2√2) 
=> a^4 = (1 - 2a + a^2)/8 
Do đó P = √[(1 - 2a + a^2)/8 + a + 1] + (1 - a)/(2√2) = √[(a^2 + 6a + 9)/8] + (1 - a)/(2√2) = (a + 3)/(2√2) + (1 - a)/(2√2) = √2 (đpcm)

10 tháng 3 2018

có phải là \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\)

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

9 tháng 3 2018

Từ: \(a+b+c=1\Leftrightarrow a=1-b-c\)

Mà theo đề bài:

\(a\le b+1\le c+2\)

\(\Rightarrow1-b-c\le b+1\le c+2\)

\(\Rightarrow2\left(c+2\right)\ge1-b-c+b+1\)

\(\Rightarrow2c+4\ge2-c\Leftrightarrow3c+4\ge2\Leftrightarrow3c\ge-2\Leftrightarrow c\ge-\frac{2}{3}\)

14 tháng 3 2018

Từ: a+b+c=1⇔a=1−b−c

Mà theo đề bài:

a≤b+1≤c+2

⇒1−b−c≤b+1≤c+2

⇒2(c+2)≥1−b−c+b+1

⇒2c+4≥2−c⇔3c+4≥2⇔3c≥−2⇔c≥−23 

...

12 tháng 5 2016

Cho a = 1; b =0,5; c = 0,5 

1^2+0,5^2+0,5^2=1+0,25+0,25=1,5

5 tháng 2 2020

Vì 0 ≤ a ≤ b + 1 ≤ c + 2

=> 0 ≤ a + b + 1 + c + 2 ≤ c + 2 + c + 2 + c + 2

=> 0 ≤ 4 ≤ 3c + 6 (vì a + b + c = 1)

=> 3c + 6 ≥ 4

=> 3c ≥ -2 => c ≥ -2/3

Dấu " = " xảy ra <=> a + b + c = 1 <=> a + b + (-2/3) = 1 <=> a + b = 5/3

Vậy GTNN của c là -2/3 khi đó a + b = 5/3

7 tháng 2 2020

Chắc em nhầm cô ạ!! Làm lại là:

Vì: \(0\le a\le b+1\le c+2\Rightarrow a+b+c\le c+2+c+1+c\)

\(\Leftrightarrow1\le3c+3\left(a+b+c=1\right)\)Hay \(3c\ge-2\Rightarrow c\ge-\frac{2}{3}\)

Vậy \(Min_C=-\frac{2}{3}\) Khi đó: \(a=\frac{4}{3};b=\frac{1}{3}\)

vì 0<a<1 ;0<b<2 ;0<c<3

=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1

=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)

c/m tương tự với b,c

=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)

và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)

Cộng các vế của bđt với nhau

=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6

Vậy GTLN của A là 6