K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

cho tam giác ABC vuông tại A đường cao AH. Kẻ HD, HE lần lượt vuoobg góc với AB,AC. Laaysddieemr M nằm giữa C và E, Kẻ AI vuông góc với BM tại I. Chứng minh sin AMB . sinACB = HI/CM

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

30 tháng 10 2021

a: Xét tứ giác EDFH có 

\(\widehat{DEH}=\widehat{DFH}=\widehat{EDF}=90^0\)

Do đó: EDFH là hình chữ nhật

8 tháng 6 2021

A t O m n B C M D

a) Tam giác vuông BOA và tam giác vuông COA có:

góc BOA = góc COA (phân giác) (1)

OA chung (2)

Từ (1) và (2) =>​ Tam giác BOA = Tam giác COA​ (cạnh huyền - góc nhọn) (đpcm). => OB = OC & AB =AC

b) Ta có: OB = OC => O thuộc trung trực BC (định lý đảo) (5)

AB = AC => O thuộc trung trực BC (định lý đảo) (6)

Từ (5) và (6) => OA là trung trực của BC (đpcm). => Ot vuông góc BC (7)

c) (Hình như BD vuông góc OC tại D, ở đây mình xét trường hợp đấy)

vuông BOA và \(\Delta\)vuông COA
BD vuông góc OC tại C (8)

Từ (7) và (8) => M là trực tâm của tam giác OBC => CM là đường cao của OBC => CM vuông góc BC (đpcm).

8 tháng 6 2021

O n m B A C M D t

a) Xét tam giác ABO và tam giác ACO có:

Góc ACO = góc ABO = 90o

AO cạnh chung

Góc AOB = góc AOC (vì OA là tia phân giác của góc mOn)

=> Tam giác ABO = tam giác ACO (cạnh huyền - góc nhọn)

b) Ta có: Tam giác ABO = tam giác ACO (cmt)

=> BO = CO (2 cạnh tương ứng)

=> Tam giác BCO cân tại O

Mà OA là đường phân giác của tam giác BCO cân tại O

=> OA là đường trung trực của BC   (đpcm)

c) Xét tam giác BCO có: 2 đường cao BD và OA cắt nhau tại M

=> CM cũng là đường cao => CM vuông góc BC   (đpcm)