K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Đặt \(a=\sqrt{x},b=\sqrt{y},c=\sqrt{z}\left(a,b,c>0\right)\)

Khi đó :

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)\(a^2+b^2+c^2\ge3\)

\(\Leftrightarrow P=\frac{a^4}{a^2b}+\frac{b^4}{cb^2}+\frac{c^4}{ac^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+cb^2+ac^2}\) ( theo BĐT cô-si schwarz )

Ta có :

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)=\left(a^3+b^2a\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

\(\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2b+b^2c+c^2a\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\sqrt{3}}{3}\sqrt{\left(a^2+b^2+c^2\right)^3}\)

Khi đó :

\(P\ge\sqrt{3}.\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{\left(a^2+b^2+c^2\right)^3}}=\sqrt{3\left(a^2+b^2+c^2\right)}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=1\Rightarrow x=y=z=1\)

4 tháng 6 2019

Đặt \(a=\sqrt{x},b=\sqrt{y},c=\sqrt{z}\left(a,b,c>0\right)\)

Khi đó 

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)và \(a^2+b^2+c^2\ge3\)

<=>\(P=\frac{a^4}{a^2b}+\frac{b^4}{cb^2}+\frac{c^4}{ac^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+cb^2+ac^2}\)(bất đẳng thức cosi schwaz)

Ta có 

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)=\left(a^3+b^2a\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

                                                        \(\ge3\left(a^2b+b^2c+c^2a\right)\)

=> \(a^2b+b^2c+c^2a\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\sqrt{3}}{3}\sqrt{\left(a^2+b^2+c^2\right)^3}\)

Khi đó 

\(P\ge\sqrt{3}.\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{\left(a^2+b^2+c^2\right)^3}}=\sqrt{3\left(a^2+b^2+c^2\right)}\ge3\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1 => x=y=z=1

5 tháng 2 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)

\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

5 tháng 2 2020

nhầm sửa x = y = z = 1 nha

9 tháng 2 2017

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Xét \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\\\sqrt{xy}\le\frac{x+y}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{y+z}{2}+\frac{x+z}{2}+\frac{x+y}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le2\left(x+y+z\right)\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Ta có: \(x+y+z\ge3\)

\(\Rightarrow\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{3}{2}\)

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\) ( đpcm )

29 tháng 2 2020

VT \(\ge\frac{\sqrt{3\sqrt[3]{x^3.y^3.1}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3.z^3.1}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3.x^3.1}}}{zx}\)( cauchy)

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\)

\(\ge3\sqrt{3}\)( cauchy)

"=" <=> x = y =z.

29 tháng 2 2020

Bài này dùng \(a^3+b^3\ge ab\left(a+b\right)\) được không nhỉ ??

Em ngại làm lắm cô Chi, cô thử cách này có được không ạ ?

\(xyz+x^3+y^3\ge xy\left(x+y+z\right)\)\(\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{xy\left(x+y+z\right)}\)

Các mấy cái kia cũng biến đổi vậy.

Không chắc nx :((

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

26 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)

Cộng các vế của các BĐT trên, ta được:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)

Tiếp tục áp dụng Cô - si:

\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)

Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

29 tháng 12 2019

\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự:

\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)

\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra tại \(x=y=z=1\)