cho 2021 số nguyên dương. Chứng minh rằng có ít nhất một số, hoặc tổng của một số số trong 2021 số đã cho chia hết 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử các số nguyên bài cho là x1<x2<...<x2021
Nếu ta chia 2021 số này thành các nhóm mà mỗi nhóm có 10 số thì có 202 nhóm và thừa lại 1 số, giả sử là x1
Dễ thấy nếu theo cách chia trên thì mỗi nhóm ít nhất có 1 số nguyên dương, hay có 202 số nguyên dương
Ta cần chứng minh x1 là số nguyên dương, thật vậy:
Nếu ta lập nhóm có 9 số nguyên âm bất kì trong các số đã cho và x1
Theo đề bài thì tổng các số trong nhóm trên là một số dương, mà trong đó có 9 số nguyên âm
Nên số còn lại phải là số nguyên dương tức là số x1
Vậy: có ít nhất 203 số nguyên duong
giả sử phản chứng trong 16 số đó không có số nào là số nguyên tố, tức là 16 hợp số
=> Xét một số a bất kì trong 16 số đó là hợp số => a=p.q ( \(p\le q\))
Mà \(a\le2020\Rightarrow pq\le2020\Rightarrow p\le44\)
Gọi 16 số đó lần lượt là a1, a2, ...,a15, a16 và mỗi số là hợp số nên phân tích được:
\(a1=p1.q1;a2=p2.q2;...,a16=p16.q16;pk\le qk\)
=> p1,p2,...,p16 \(\le44\)
Gọi r1, r2,..., r16 lần lượt là các ước nguyên tố của p1, p2,...,p16 => r1, r2 ...,r16\(\le44\)
Mà có 14 số nguyên tố khác nhau < 44 ( là các số: 2,3,5,7,11,13,17,19,23,29,31,37,42,43)
Theo nguyên lý Dirichlet có 16 số mà có 14 giá trị => tồn tại rx=ry ( \(1\le x;y\le16\))
=> 2 số bất kì NTCN
=> giả thiết trên sai => đpcm
Xem phần chứng minh tồn tại ít nhất 2 số có hiệu chia hết cho 10 tại đây nhé!
Bạn tham khảo:
Câu hỏi của kiều nguyệt Hằng - Toán lớp 6 - Học toán với OnlineMath
Gọi \(2021\)số đó là \(a_1,a_2,...,a_{2021}\).
Đặt \(t_1=a_1,t_2=a_1+a_2,...,t_n=a_1+a_2+...+a_n,...,t_{2021}=t_1+...+t_{2021}\).
\(t_1,...,t_{2021}\)có \(2021\)số nên có ít nhất \(2\)trong \(2021\)số trên có cùng số dư khi chia cho \(2020\).
Giả sử đó là \(t_m,t_n\)với \(m>n\).
Khi đó \(t_m-t_n\)chia hết cho \(2020\).
Ta có đpcm.
đpcm là j ạ