giải phương trình:
\(\frac{x-1}{2}\)(x-2) =\(\frac{x-1}{2}\)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\)
<=> \(\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{1}{x+1}=0\)
<=> \(\frac{2}{\left(x-1\right)^2\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}=0\)
<=> \(2+3x-3+x^2-2x+1=0\)
<=> x2 + x = 0
<=> x(x + 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy S = {0; -1}
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-x}+1\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-4+3x+3=3+x^2-2x+x-2\)
\(\Leftrightarrow x^2-x^2+3x+2x-x=1+4-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{x^2-x-2}=\frac{3+x^2-x-2}{x^2-x-2}\)
\(x^2-4+3x+3=1+x^2-x\)
\(x^2+3x-1-1-x^2+x=0\)
\(4x-2=0\)
\(4x=2\Leftrightarrow x=\frac{1}{2}\)
Vậy.....
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
\(\Leftrightarrow\)\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x+1\right).\left(x-2\right)}+1\)
ĐKXĐ: \(x\ne-1,2\)
\(\frac{\left(x+2\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}+\)\(\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=\)\(\frac{3}{\left(x+1\right).\left(x-2\right)}+\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)
\(\Leftrightarrow\) \(\left(x^2-4\right)\) \(+3.\left(x+1\right)=\)\(3+\left(x+1\right).\left(x-2\right)\)
\(\Leftrightarrow\) x2 - 4 + 3x + 3 = 3 + x2 - x - 2
\(\Leftrightarrow\) x2 + 3x - x2 + x = 4 - 3 + 3 - 2
\(\Leftrightarrow\) 4x = 2
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy phương trình có nghiệm là: \(x=\frac{1}{2}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
ĐKXĐ \(x\ne0,-1,-2,...,-100\)
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+...+\frac{1}{x^2+199x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+...+\frac{1}{x^2+99x+100x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+....+\frac{1}{x\left(x+99\right)+100\left(x+99\right)}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{x+100-x}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{100}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow25x^2+2500x=2100\)
\(\Leftrightarrow x^2+100x-84=0\)
\(\Leftrightarrow x^2+2.x.50+50^2-50^2-84=0\)
\(\Leftrightarrow\left(x+50\right)^2-2584=0\)
\(\Leftrightarrow\left(x+50-2\sqrt{646}\right)\left(x+50+2\sqrt{646}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-50+2\sqrt{646}\\x=-50-2\sqrt{646}\end{cases}}\)
Vậy ...
Điều kiện: x khác (-3,-2,1,4)
PT <=>
\(1+\frac{2}{x-1}+1-\frac{4}{x+2}+1-\frac{6}{x+3}+1+\frac{8}{x-4}=4\)
<=> \(\frac{1}{x-1}-\frac{2}{x+2}-\frac{3}{x+3}+\frac{4}{x-4}=0\)
<=> (x+2)(x+3)(x-4)-2(x-1)(x+3)(x-4)-3(x-1)(x+2)(x-4)+4(x-1)(x+2)(x+3)=0
<=> (x3+x2-14x-24)-2(x3 - 2x2-11x+12) - 3(x3 - 3x2- 6x+8) + 4(x3+4x2 + x-6) = 0
<=> x3+x2-14x-24-2x3 + 4x2+22x-24 - 3x3 + 9x2+ 18x-24 + 4x3+16x2 + 4x-24 = 0
<=> 30x2 + 30x -96=0
<=> 5x2 + 5x -16 = 0
Giải ra được: \(\orbr{\begin{cases}x_1=\frac{-5-\sqrt{345}}{10}\\x_2=\frac{-5+\sqrt{345}}{10}\end{cases}}\)
\(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=3-\frac{\left(1-\frac{6-x}{3}\right).\frac{1}{2}}{2}\)
\(\Leftrightarrow2x-\frac{x}{2}+\frac{3+x}{4}=6-\frac{1}{2}+\frac{6-x}{6}\)
\(\Leftrightarrow24x-6x+9+3x=72-6+12-2x\)
\(\Leftrightarrow23x=69\)
\(\Leftrightarrow x=3\)
Vậy nghiệm của pt x=3
<=> \(\frac{x^2-3x+2}{2}=\frac{x^2+2x-3}{2}\)
=> x2 - 3x + 2 = x2 + 2x - 3
<=> 5x = 5
<=> x = 1
Vậy S = {1}
\(\frac{x-1}{2}\left(x-2\right)=\frac{x-1}{2}\left(x+3\right)\)
\(\frac{\left(x-1\right)\left(x-2\right)}{2}=\frac{\left(x-1\right)\left(x+3\right)}{2}\)
\(\left(x-1\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x^2-2x-x+2=x^2+3x-x-3\)
\(x^2-3x+2=x^2+3x-x-3\)
\(x^2+3x+2=2x-3\)
\(-3x+2=2x-3\)
\(2=2x-3+3x\)
\(2=5x-3\)
\(5x=5\Leftrightarrow x=1\)