Cho tam giác ABC (AB<AC) có AD là đường phan giác ,M là trung điểm của BC. Một đường thẳng qua M và song song với AD cắt các đường thẳng AC vad AB lần lượt tại E và F
a, CM tam giác AEF cân và BF/AF =BM/DM
b,Chứng minh CE=BF
c, Chứng minh \(\frac{2}{AD}>\frac{1}{AB}+\frac{1}{AC}\)
a,Ta có \(FM//AD\left(gt\right)\Rightarrow\widehat{EFA}=\widehat{DAB}\left(đvị\right);\widehat{FEA}=\widehat{DAE}\left(slt\right)\)
mà \(\widehat{DAB}=\widehat{DAE}\Rightarrow\widehat{EFA}=\widehat{FEA}\)
\(\Rightarrow\Delta AFE\)cân tại A
xét \(\Delta BMF\left(AD//MF\right)\)Áp dụng định lí ta-let ta có
\(\frac{BF}{AF}=\frac{BM}{DM}\)
b, \(\Delta ABC\)có AD là đường phân giác
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}^{^{\left(1\right)}}\)
Ta có AD//EM => \(\widehat{EMD}=\widehat{ADB};\widehat{ADM}=\widehat{EMC}\left(đvị\right)\)
Xét \(\Delta ECM\)và \(\Delta ACD\)có
\(\widehat{C}:chung \)
\(\widehat{EMC}=\widehat{ADC}\left(cmt\right)\)
\(\Rightarrow\Delta ECM\)VÀ \(\Delta ACD\)đồng dạng (g.g)
\(\Rightarrow\frac{CM}{CE}=\frac{CD}{CA}^{^{\left(2\right)}}\)
Chứng minh tương tự ta có
\(\Delta ABD\)và \(\Delta FAM\)đồng dạng (g.g)
\(\Rightarrow\frac{DB}{AB}=\frac{MB}{BF}^{^{\left(3\right)}}\)
Từ (1)(2)(3) \(\Rightarrow\frac{CM}{CE}=\frac{MB}{BF}\) mà CM=MB (gt) nên CE=BF
p/s: câu c để mình nghĩ tiếp