K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

a, dùng pytago tính ra BC = 10 cm

tam giác ABC có AD là phân giác (gt)

=> CD/AC = BD/AB (tính chất)

=> CD + DB/AB+AC = CD/AC + BD/AB

AB = 6; AC = 8; BC = 10 và CD + DB = BC

=> 10/14 = CD/8 = BD/6

=> CD = 40/7 và BD = 30/7

2 tháng 2 2021

câu a là chứng minh goc BAC nhé

20 tháng 7 2018

Áp dụng Pitago ta có : BC = 10

Áp dụng tính chất của tia phân giác ta có : BD/DC = AB/AC = 3/4

=> BD/BC = 3/7 => BD = 30/7 cm, CD = 40/7 cm

HD // AC => HD / AC = BD / BC

=> HD = 30/70.8 = 24/7 

Do góc HAD = 45 độ => T/g HAD vuông cân => AD^2 = 1152/49 => AD = \(\frac{24\sqrt{2}}{7}\)cm

10 tháng 7 2021

A B C 6 D H 8

Vì \(AC\perp AB;HD\perp AB\Rightarrow AC//HD\)

Áp dụng hệ quả Ta lét ta có : \(\frac{BD}{BC}=\frac{HD}{AC}\)(*) 

Vì AD là đường phân giác ^A nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Lại có : \(BC^2=AB^2+AC^2=36+64=100\Rightarrow BC=10\)cm 

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{10}{14}=\frac{5}{7}\)

\(\Rightarrow DC=\frac{5}{7}AC=\frac{5}{7}.8=\frac{40}{7}\)cm ; \(BD=\frac{5}{7}AB=\frac{5}{7}.6=\frac{30}{7}\)cm 

Thay vào (*) ta được : \(\frac{\frac{30}{7}}{10}=\frac{HD}{8}\Rightarrow10HD=\frac{240}{7}\Rightarrow HD=\frac{24}{7}\)cm 

Có :  \(\frac{BH}{AB}=\frac{HD}{AC}\)( hệ quả Ta lét ) \(\Rightarrow BH=\frac{AB.HD}{AC}=\frac{6.\frac{24}{7}}{8}=\frac{18}{7}\)cm 

\(\Rightarrow AH=AB-BH=6-\frac{18}{7}=\frac{24}{7}\)cm 

Áp dụng định lí Pytago tam giác AHD vuông tại H ta có : 

\(AD^2=AH^2+HD^2=\left(\frac{24}{7}\right)^2+\left(\frac{24}{7}\right)^2=2\left(\frac{24}{7}\right)^2\)

\(\Rightarrow AD=\frac{24\sqrt{2}}{7}\)cm o.O bạn check lại xem nhé 

10 tháng 7 2017

xét tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\left(pytagor\right)\)

\(\Rightarrow BC=10\left(cm\right)\)

xét tam giác ABC ta có AD  là đường phân giác => \(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BC}{AB+AC}=\frac{5}{7}\)

=> BD= 30/7 (cm) ; DC= 40/7 (cm)

b/ có DH  vuông góc AB ; AC vuông góc AB (tam giác vuông)

=> DH//AC => \(\frac{DH}{AC}=\frac{BD}{BC}=\frac{BH}{AB}\)(hệ quả Thales) => \(DH=\frac{AC.BD}{BC}=\frac{24}{7}\left(cm\right)\)

ta có HAD=CAD (p/giác) ; HDA=CAD( 2 góc slt; DH//AC) => HAD=HDA => tam giác AHD cân tại H

mà tam giác AHD vuông tại H => tam giác AHD vuông cân tại H

=> \(AD^2=2DH^2\)=> \(AD=\frac{24\sqrt{2}}{7}\left(cm\right)\)

mình ko tính ra số thập phân. Bạn tự tính nhé. Chúc bn học tốt

11 tháng 7 2017

Thanks bạn

24 tháng 4 2016

D C H B A

Mình nói tóm tắt thôi nhé!

a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)

b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD

c) Mình chưa nghĩ rabucminh

 

24 tháng 4 2016

Câu c là tính HC nhé bạn!

c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm

BH + HC = BC = 10cm

BH = AB = 6cm

=> HC = 10 - 6 = 4 cm

Chúc bạn học tốt!hihi

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !

Bài 6: 

a: Xét tứ giác AKDH có 

\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)

Do đó: AKDH là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=2,5(cm)

11 tháng 1 2022

a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)

b, áp dụng đl pytago vào tam giác vuông ABC có :

\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)

vì AD là trung tuyến tam giác vuông ABC nên :

\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)

c,vì AKDH là hình chữ nhật nên : DH//KA

mà D là trung điểm BC 

=>H là trung điểm AC

<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\) 

vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)

\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)