K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

a, xét ΔAMC và ΔANB có : ^A chung

AB = AC do ΔABC cân tại A (gt)

^ANB = ^AMC = 90

=> ΔAMC = ΔANB (ch-gn)

=> AM = AN (định nghĩa)

b, xét ΔBMC và ΔCNB có : BC chung

^ABC = ^ACB do ΔABC cân tại A (gt)

^BMC = ^CNB = 90

=> ΔBMC = ΔCAB (ch-gn)

=> ^HBC = ^HCB (định nghĩa)

=> ΔHBC cân tại H (định nghĩa)

=> HB = HC 

=> H thuộc đường trung trực của BC (định lí)

AB = AC (Câu a) => A thuộc đường trung trực của BC (Định lí)

=> AH là trung trực của CB (đl)

Bài làm

a) Xét tam giác AMC và tam giác ANB có:

^AMC = ^ANB = 90°

Cạnh huyền: AB = AC ( tam giác ABC cân )

Góc nhọn: ^A chung.

=> ∆AMC = ∆ANB ( cạnh huyền-góc nhọn )

=> AM = AN ( hai cạnh tương ứng )

b) Xét tam giác ABC có:

CM  |  AB ( gt )

BN  |  AC

Mà CM cắt BN tại H

=> H là trực tâm.

=> AH  |  BC

Mà tam giác ABC cân tại A

=> AH vừa là đường cao vừa là đường trung tuyến.

=> AH là trung trực của BC . ( Đpcm )

c) Gọi giao điểm của AH và BC là I

Nối NI, và NI // MB ( bạn có thể tìm cách chứng minh nó song song ), nối MN 

Vì AM = AN => Tam giác AMN cân tại A

=> ^AMN = ( 180° - ^A )/2

Tam giác ABC cân tại A => ^ABC = ( 180° - ^A )/2

=> ^AMN = ^ ABC  mà 2 góc này ở vị trí đồng vị.

=> MN // BC.

=> ^MNB = ^NBI 

Xét tam giác BMN và tam giác NIB có:

^MNB = ^NBI ( so le trong)

BN chung.

^MBN = ^INB ( so le trong )

=> ∆BMN = ∆NIB  ( g.c.g )

=> MN = IB 

Mà BI = IC ( do AI trung trực )

=> IC = MN

=> ( BI + IC )/2 = MN

=> 2MN = BC ( đpcm )

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))

a: Xét \(\left(O\right)\) có

\(\widehat{CNB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{CNB}=90^0\)

hay CM\(\perp\)AB

Xét \(\left(O\right)\) có 

\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BNC}=90^0\)

hay BN\(\perp\)AC

b: Xét ΔABC có

BN là đường cao ứng với cạnh AC

CM là đường cao ứng với cạnh AB

BN cắt CM tại H

Do đó: AH\(\perp\)BC

a: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)

b: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

c: Ta có: M nằm trên đường trung trực của AC

nên MA=MC

hay ΔMAC cân tại M

2 tháng 11 2021

a, Vì \(\left\{{}\begin{matrix}\widehat{BAH}=\widehat{CAH}\\\widehat{AHB}=\widehat{AHC}=90^0\\AH.chung\end{matrix}\right.\) nên \(\Delta AHB=\Delta AHC\left(g.c.g\right)\)

Do đó \(AB=AC;\widehat{B}=\widehat{C}\)

b, Vì \(\Delta AHB=\Delta AHC\) nên \(BH=HC\) hay H là trung điểm BC

Mà AH vuông góc BC tại H nên AH là trung trực BC

c, Vì \(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\\\widehat{BEH}=\widehat{CFH}=90^0\\BH=HC\end{matrix}\right.\) nên \(\Delta BHE=\Delta CHF\left(ch-gn\right)\)

2 tháng 11 2021

phần D nữa bạn

 

a: Xét ΔABN vuông tại N và ΔACM vuông tại M có

AB=AC
\(\widehat{BAN}\) chung

Do đó: ΔABN=ΔACM

Suy ra: BN=CM

b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có 

BC chung

MC=BN

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

7 tháng 7 2017

7 tháng 6 2021

Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.

Không có mô tả.

7 tháng 6 2021

tiếp câu b.