Cho tam giác ABC cân tại A có CM vuông góc AB và BN vuông góc AC. Cho CM cắt BN tại H.
a. Chứng minh: AM = AN
b. Chứng minh: AH là trung trực của BC
c. Chứng minh: 2MN = BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
a: Xét \(\left(O\right)\) có
\(\widehat{CNB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{CNB}=90^0\)
hay CM\(\perp\)AB
Xét \(\left(O\right)\) có
\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BNC}=90^0\)
hay BN\(\perp\)AC
b: Xét ΔABC có
BN là đường cao ứng với cạnh AC
CM là đường cao ứng với cạnh AB
BN cắt CM tại H
Do đó: AH\(\perp\)BC
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Ta có: M nằm trên đường trung trực của AC
nên MA=MC
hay ΔMAC cân tại M
a, Vì \(\left\{{}\begin{matrix}\widehat{BAH}=\widehat{CAH}\\\widehat{AHB}=\widehat{AHC}=90^0\\AH.chung\end{matrix}\right.\) nên \(\Delta AHB=\Delta AHC\left(g.c.g\right)\)
Do đó \(AB=AC;\widehat{B}=\widehat{C}\)
b, Vì \(\Delta AHB=\Delta AHC\) nên \(BH=HC\) hay H là trung điểm BC
Mà AH vuông góc BC tại H nên AH là trung trực BC
c, Vì \(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\\\widehat{BEH}=\widehat{CFH}=90^0\\BH=HC\end{matrix}\right.\) nên \(\Delta BHE=\Delta CHF\left(ch-gn\right)\)
a: Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có
BC chung
MC=BN
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.
a, xét ΔAMC và ΔANB có : ^A chung
AB = AC do ΔABC cân tại A (gt)
^ANB = ^AMC = 90
=> ΔAMC = ΔANB (ch-gn)
=> AM = AN (định nghĩa)
b, xét ΔBMC và ΔCNB có : BC chung
^ABC = ^ACB do ΔABC cân tại A (gt)
^BMC = ^CNB = 90
=> ΔBMC = ΔCAB (ch-gn)
=> ^HBC = ^HCB (định nghĩa)
=> ΔHBC cân tại H (định nghĩa)
=> HB = HC
=> H thuộc đường trung trực của BC (định lí)
AB = AC (Câu a) => A thuộc đường trung trực của BC (Định lí)
=> AH là trung trực của CB (đl)
Bài làm
a) Xét tam giác AMC và tam giác ANB có:
^AMC = ^ANB = 90°
Cạnh huyền: AB = AC ( tam giác ABC cân )
Góc nhọn: ^A chung.
=> ∆AMC = ∆ANB ( cạnh huyền-góc nhọn )
=> AM = AN ( hai cạnh tương ứng )
b) Xét tam giác ABC có:
CM | AB ( gt )
BN | AC
Mà CM cắt BN tại H
=> H là trực tâm.
=> AH | BC
Mà tam giác ABC cân tại A
=> AH vừa là đường cao vừa là đường trung tuyến.
=> AH là trung trực của BC . ( Đpcm )
c) Gọi giao điểm của AH và BC là I
Nối NI, và NI // MB ( bạn có thể tìm cách chứng minh nó song song ), nối MN
Vì AM = AN => Tam giác AMN cân tại A
=> ^AMN = ( 180° - ^A )/2
Tam giác ABC cân tại A => ^ABC = ( 180° - ^A )/2
=> ^AMN = ^ ABC mà 2 góc này ở vị trí đồng vị.
=> MN // BC.
=> ^MNB = ^NBI
Xét tam giác BMN và tam giác NIB có:
^MNB = ^NBI ( so le trong)
BN chung.
^MBN = ^INB ( so le trong )
=> ∆BMN = ∆NIB ( g.c.g )
=> MN = IB
Mà BI = IC ( do AI trung trực )
=> IC = MN
=> ( BI + IC )/2 = MN
=> 2MN = BC ( đpcm )