Tìm tất cả các số nguyên tố khác nhau\(m,n,p,q\)thõa \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{mnpq}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
để M là số nguyên thì 2 chia hết cho n-1
n-1 thuộc Ư(2)
n-1=1
=>n=2
n-1=-1
=>n=0
n-1=-2
=>n=-1
n-1=2
=>n=3
vậy n thuộc{2;0;-1;3}
Để M là giá trị nguyên thì n - 1 là ước nguyên của 2
U(2) là { 1; 2; -1; -2 }
\(n-1=1\Rightarrow n=2.\)
\(n-1=-1\Rightarrow n=0.\)
\(n-1=2\Rightarrow n=3\)
\(n-1=-2\Rightarrow n=-1\)
mink nghĩ vậy bạn ạ
1. \(n\in\left\{1;2;3;4;5;...\right\}\)
2. \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1009}\)
\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
Ta có :
\(\left(A-B-1\right)^{2019}=\left(\frac{1}{1010}+...+\frac{1}{2019}-\left(\frac{1}{1010}+...+\frac{1}{2019}\right)-1\right)^{2019}\)
\(=\left(-1\right)^{2019}=-1\)
Không mất tính tổng quát , giả sử m < n < p < q
Nếu m \(\ge\)3 thì : \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{mnpq}\le\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3.5.7}< 1\)
Suy ra m = 2
Khi đó : \(\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{2npq}=\frac{1}{2}\) ( 1 )
Nếu n \(\ge\)5 thì \(\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{2npq}\le\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{2.5.7.11}< \frac{1}{2}\)
Vậy n = 3 và ( 1 ) trở thành : \(\frac{1}{p}+\frac{1}{q}+\frac{1}{6pq}=\frac{1}{6}\)
\(\Leftrightarrow\left(p-6\right)\left(q-6\right)=37\Rightarrow p=7;q=43\)
Vậy (m,n,p,q) = .( 2,3,7,43 ) và các hoán vị của nó