Cho tam giác ABC có 3 góc nhọn.Gọi D, E, F lần lượt là các điểm nằm trên cạnh BC, AC, AB sao cho AD, BE, CF đồng quy tại O CMR AF/BF +AE/CE+AO/OD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : AB = AC
=> ∆ABC cân tại A
=> ABC = ACB
AB = AC
Mà AF = AE
=> FB = EC
Xét ∆FCB và ∆EBC ta có :
ABC = ACB (cmt)
FB = EC (cmt)
BC chung
=> ∆FCB = ∆EBC (c.g.c)
=> BE = CF (dpcm)
b) Vì ∆FBC = ∆EBC (cmt)
=> BFO = CEO ( 2 góc tg ứng )
Xét ∆BFO và ∆CEO ta có :
FB = EC (cmt)
BFO = CEO (cmt)
FOB = EOC ( đối đỉnh)
=> ∆BFO = ∆CEO (g.c.g)
=> BO = OC
=> ∆BOC cân tại O
c) Gọi H là giao điểm của AO và BC
G là giao điểm của FE và AO
Ta có : AF = AE (gt)
=> ∆AFE cân tại A
Xét ∆FAG và ∆EAG ta có :
AF = AE
AFG = AEG ( ∆AFE cân tại A)
AG chung
=> ∆FAG = ∆EAG (c.g.c)
=> FAG = EAG ( 2 góc tương ứng)
=> AG là phân giác của BAC
Mà H nằm trên tia đối AO
=> AH là phân giác ∆ABC
=> AH vuông góc với BC (trong ∆ cân có phân giác đồng thời là trung trực ∆ ABC )
a) Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF(gt)
và AB=AC(ΔABC cân tại A)
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC(cmt)
\(\widehat{EBC}=\widehat{FCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔEBC=ΔFCB(c-g-c)
Suy ra: EC=FB(hai cạnh tương ứng)
b) Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(ΔEBC=ΔFCB)
nên ΔDBC cân tại D(Định nghĩa tam giác cân)
Xét bài toán (II): Cho tam giác A'B'C' điểm D' thuộc cạnh BC sao cho \(\frac{A'B'}{A'C'}=\frac{D'B'}{D'C'}\).
Chứng minh: A'D' là phân giác góc A' của tam giác A'B'C'
Trên tia đối tia D'A' lấy điểm E' sao cho B'E'=B'A'
=> \(\Delta B'E'A'\)cân tại B'
=> \(\widehat{B'A'D'}=\widehat{B'E'D'}\)(1)
Xét tam giác: A'D'C' và tam giác E'D'B' có: \(\frac{E'B'}{A'C'}=\frac{D'B'}{D'C'}\)và \(\widehat{C'D'A'}=\widehat{B'D'E'}\)
=> Hai tam giác trên đồng dạng
=> \(\widehat{C'A'D'}=\widehat{B'E'D'}\)(2)
Từ (1), (2) => \(\widehat{C'A'D'}=\widehat{B'A'D'}\)=> A'D' là phân giác góc A của tam giác A'B'C'
Quay lại bài toán của bạn:
Xét tam giác EFD có: M thuộc FD và \(\frac{ED}{EF}=\frac{MD}{MF}\)
theo bài toán (II) đã chứng minh ở trên ta có: EM là phân giác góc \(\widehat{FED}\)
tương tự FN là phân giác góc \(\widehat{DFE}\)
mà EM cắt FN tại H
=> H là giao ba đường phân giác trong tam giác DEF
=> DA là phân giác trong góc FDE
Như vậy cần chứng minh H là trực tâm của tam giác ABC
Bài này có thể phải dùng tới định lí Menenaus hoặc Ceva. Em đã được học về các định lý này chưa?