Cho tam giác ABC cân tại A.Kẻ AH vuông góc BC tại H .Trên tia đối của HA lấy điểm M sao cho AH=HM. a) Chứng minh tam giác ABH=tam giác MBH. b) Trên tia đối của tia CA lấy điểm N sao cho CA=CN.Chứng minh tam giác CMN cân. c) Chứng minh AM vuông góc với MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB và ΔCNM có
CA=CN
\(\widehat{ACB}=\widehat{NCM}\)(hai góc đối đỉnh)
CB=CM
Do đó: ΔCAB=ΔCNM
=>\(\widehat{CAB}=\widehat{CNM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MN
b:
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC
Xét ΔHAC vuông tại H và ΔKNC vuông tại K có
AC=NC
\(\widehat{HCA}=\widehat{KCN}\)(hai góc đối đỉnh)
Do đó: ΔHAC=ΔKNC
=>HC=KC
mà HB=HC
nên HB=KC
Xét ΔABH vuông tại H và ΔNCK vuông tại K có
BH=CK
\(\widehat{ABH}=\widehat{NCK}\)\(\left(=\widehat{ACB}\right)\)
Do đó: ΔABH=ΔNCK
Áp dụng đl Pi ta go đảo cho Tam giác ABC
=>AB2+CA2=BC2
=>152+362=392
=>1521=1521
=>Tam giác ABC vuông tại A
Áp dụng đl pi ta go cho tam giác ABH
=>AB2=AH2+BH2
=>152=92+BH2
=>BH2=225-81=144=122
=>BH=12
Vậy...
1: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có
CH chung
HA=HD
Do đó: ΔHAC=ΔHDC
Suy ra: CA=CD
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
a,Ta có:
\(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung
\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )
b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:
AH = HM (gt)
\(\widehat{AHC}\)= \(\widehat{MHC}\)(= 90 độ)
HC : cạnh chung
\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)
\(\Rightarrow\)AC=CM ( t/ứ)
Mà AC = CN (gt) và CM = AC (cmt)
nên CM = CN
\(\Rightarrow\Delta CMN\)cân