Cho x là số tự nhiên, giá trị x thoả mãn biểu thức: 1 + 3 +5+…+(2n -1)=n^2 - 2n + 2010 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
Lời giải:
$2n+1\vdots n+5$
$\Rightarrow 2(n+5)-9\vdots n+5$
$\Rightarrow 9\vdots n+5$
Mà $n+5\geq 5$ với $n$ là số tự nhiên.
$\Rightarrow n+5=9$
$\Rightarrow n=4$
Lời giải:
2𝑛+1⋮𝑛+52n+1⋮n+5
⇒2(𝑛+5)−9⋮𝑛+5⇒2(n+5)−9⋮n+5
⇒9⋮𝑛+5⇒9⋮n+5
Mà 𝑛+5≥5n+5≥5 với 𝑛n là số tự nhiên.
⇒𝑛+5=9⇒n+5=9
⇒𝑛=4⇒n=4