K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE   =    AF   =   BF   =   CE

∠FAB  = ∠B1   => AF//BE

2. (1,0 điểm)

Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF  nên tứ giác AEOF là hình thoi.

DOFN và DAFM có ∠FAE = ∠FOE  (2 góc đối của hình thoi)

∠AFM = ∠FNO  (2 góc so le trong)

=> ΔAFM đồng dạng với ΔONF (g-g)

⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON

3. (1,0 điểm)

Có ∠AFC = ∠ABC = 600  và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO

=> AO² = AM.MO

⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 =>  ΔAOM và  ΔONA đồng dạng.

=> ∠AOM = ∠ONA

Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp

1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE   =    AF   =   BF   =   CE

∠FAB  = ∠B1   => AF//BE

2. (1,0 điểm)

Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF  nên tứ giác AEOF là hình thoi.

DOFN và DAFM có ∠FAE = ∠FOE  (2 góc đối của hình thoi)

∠AFM = ∠FNO  (2 góc so le trong)

=> ΔAFM đồng dạng với ΔONF (g-g)

⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON

3. (1,0 điểm)

Có ∠AFC = ∠ABC = 600  và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO

=> AO² = AM.MO

⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 =>  ΔAOM và  ΔONA đồng dạng.

=> ∠AOM = ∠ONA

Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp

Mk vẽ hình r nhưng ko bít đăng ! 

11 tháng 7 2016

Toán lớp 8

1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE   =    AF   =   BF   =   CE

∠FAB  = ∠B1   => AF//BE

2. (1,0 điểm)

Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF  nên tứ giác AEOF là hình thoi.

DOFN và DAFM có ∠FAE = ∠FOE  (2 góc đối của hình thoi)

∠AFM = ∠FNO  (2 góc so le trong)

=> ΔAFM đồng dạng với ΔONF (g-g)

⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON

3. (1,0 điểm)

Có ∠AFC = ∠ABC = 600  và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO

=> AO² = AM.MO

⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 =>  ΔAOM và  ΔONA đồng dạng.

=> ∠AOM = ∠ONA

Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp

11 tháng 7 2016

Nguyên đề thi Toán lớp 9 học kỳ .Có cả phần tính ddieemr luôn nha

25 tháng 5 2018

a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°

suy ra AMNB nội tiếp

b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)

xét tứ giác CPAB có góc CAB=CPB=90°

suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)

suy ra góc BCA=BPA(1)

góc PBA=PCA(2)

mà góc MPN=ACB=1/2sđcung MN(3)

góc PCA=PNM=1/2sđcung PM(4)

từ 1,3 suy ra góc ACB=MPN

từ 2,4 suy ra góc PNM=PBA

xét hai tam giác PAB và PMN có 

góc APB=MPN(cmt)

góc PNM=PBA(cmt)

suy ra hai tam giác đó đồng dạng (đpcm)

c, ta có góc PDN=PCN=1/2sđ cung PN(1)

góc PAC=PBC(CPAB nội tiếp)(2)

mà góc PBC+PCB=90°(3)

từ 1,2,3 suy ra góc DAC+ADE=90°

suy ra DN vuông với AC

xét hai tam giác PCM và ECG có góc C chung

góc CEG=CPM=90°

suy ra hai tam giác đó đồng dạng

suy ra PC/EC=CM/CG

suy ra PC.CG=EC.CM(đpcm)

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
28 tháng 11 2016

không biết làm sao đây?

31 tháng 5 2017

mình mới lớp 4.