Cho hai số thực dương x,y thỏa mãn: x+y\(\ge10\)
Tìm giá trị nhỏ nhất của biểu thức sau:
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\left(\frac{30}{x}+\frac{6}{5}x\right)+\left(\frac{5}{y}+\frac{1}{5}y\right)+\left(\frac{4}{5}x+\frac{4}{5}y\right)\)
\(\ge2\sqrt{\frac{30}{x}\cdot\frac{6}{5}x}+2\sqrt{\frac{5}{y}\cdot\frac{1}{5}y}+\frac{4}{5}.10\)
\(=2\cdot6+2\cdot1+8=22\)
Dấu "=" xảy ra khi: \(x=y=5\)
Vậy Min(P) = 22 khi x = y = 5
Hãy xem phương pháp chọn điểm rơi của BĐT AM-GM( BĐT Cô-si)
Giải
\(P=\frac{3x}{10}+\frac{30}{x}+\frac{y}{20}+\frac{5}{y}+\frac{17x}{10}+\frac{19y}{20}\)
Áp dụng BĐT AM-GM, ta có:
\(\frac{3x}{10}+\frac{30}{x}\ge2\sqrt{\frac{3x}{10}\cdot\frac{30}{x}}=6\)
\(\frac{y}{20}+\frac{5}{y}\ge2\sqrt{\frac{y}{20}\cdot\frac{5}{y}}=1\)
Do đó
\(P\ge6+1+17+\frac{19}{2}=\frac{67}{2}\)(Vì \(x,y\ge10\))
Vậy \(P_{min}=\frac{67}{2}\Leftrightarrow x=y=10\)
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)
\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)
Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2
Cách giải như sau
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1
=x2+3x+1x =x2−x+14 +4x+1x +14
=(x−12 )2+4x+1x +14
Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy minA=4+14 =174 <=> x = y = 1/2
HOK TỐT
Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).
Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
Ta có: \(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{4}{5}x+\frac{6}{5}+\frac{4}{5}y+\frac{y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{4}{5}\left(x+y\right)+\left(\frac{6}{5}x+\frac{30}{x}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
\(Vì:x,y>0\) nên ta áp dụng BĐT Cauchy cho hai số dương \(\frac{6}{5}x\) và \(\frac{30}{x};\frac{y}{5}\) và \(\frac{5}{y}\) ta được:
\(\frac{6}{5}x+\frac{30}{x}\ge2\sqrt{\frac{6}{5}x.\frac{30}{x}}=12\left(1\right)\)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) và giả thiết \(x+y\ge10\)
\(\Rightarrow P\ge8+12+2=22\)
\(\Rightarrow Min_P=22\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=5\)