\(\frac{1+3x}{6}\)- \(\frac{2+x}{9}\)= -4+x
* Help mik vs , mk cần GẤP !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm ngắn gọn thôi nhé :v
\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)
\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)
\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)
\(A=\frac{x+2}{x-3}\)
\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)
\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{x+2}{x-2}\)
\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{10x}{-x^2+9}\)
\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)
\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)
\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)
\(D=\frac{51x-15}{2x^3-18x}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)
\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)
\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(E=\frac{10x^2+10}{x^4-2x+1}\)
\(a,\frac{-9}{x}=\frac{-9}{\frac{4}{49}}\)
\(\Rightarrow x=\frac{4}{49}\)
\(b,\left|x-2\right|+\left|x+3\right|=0\)
\(\left|x-2\right|\ge0;\left|x+3\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=-3\end{cases}vl}}\)
\(c,3x^2+9x+6=0\)
\(\Rightarrow3x^2+3x+6x+6=0\)
\(\Rightarrow3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Rightarrow\left(3x+6\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+6=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)
\(d,x^2-7x-8=0\)
\(\Rightarrow x^2+x-8x-8=0\)
\(\Rightarrow x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Rightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
Sửa đề: x2 + 13x + 41 --> x2 + 13x + 42
Giải:
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+41}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{2}\)
(ĐKXĐ: \(x\ne\left\{-1;-2;-3;-4;-5;-6;-7\right\}\))
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x+7-x-1}{\left(x+1\right)\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=12\)
\(\Leftrightarrow x^2+8x+7=12\)
⇔x2-8x=5
⇔ x2-8x+(-4)2=5+(-4)2
⇔ x2-8x+16=21
⇔ (x-4)2=21
⇔ x=±21+4
Vậy...
Chúc bạn học tốt@@
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
h.3x - 2/6 - 5 = 3 - 2(x + 7)/4
<=> 3x - 2 - 30/6 = 3 - 2(x + 7)/4
<=> 3x - 32/6 = 3 - 2x - 14/4
<=> 3x - 32/6 = -2x - 11/4
<=> 6x - 64/12 = -6x - 33/12
<=> 6x - 64 = -6x - 33 <=> 12x = 31 <=> x = 31/12
a, \(3\left(2x-1\right)-3x\left(-x+2\right)=5x-\left(1-3x\right)\cdot x\\ 6x-3+3x^2-6x=5x-x+3x^2\\ 3x^2-3=4x+3x^2\\ 3x^2-3x^2=4x+3\\ 4x+3=0\\ 4x=-3\\ x=\frac{-3}{4}\)
Vậy \(x=\frac{-3}{4}\)
b, \(x-\frac{x-3}{4}=3-\frac{x-3}{12}\\ \frac{4x-x-3}{4}=\frac{36-x-3}{12}\\ \frac{3x-3}{4}=\frac{33-x}{12}\\ \Rightarrow12\left(3x-3\right)=4\left(33-x\right)\\ 36x-36=132-4x\\ 36x+4x=132+36\\ 40x=168\\ x=\frac{168}{40}=\frac{21}{5}\)
Vậy \(x=\frac{21}{5}\)
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
a)\(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left[\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right]\)
\(=\left(1-\frac{-2\left(x^3-3\right)}{\left(x^3+3\right)\left(x^3-3\right)}\right).\frac{4}{x^2\left(x^3+3\right)}:\left[\frac{6\left(x^3-2\right)\left(x^3+2\right)}{x^3\left(x^3+3\right)^2}:\frac{3x^3+6}{2x}\right]\)
\(=\left(\frac{x^3+3}{x^3+3}-\frac{-2}{x^3+3}\right).\frac{4}{x^2\left(x^3+3\right)}:\frac{12x\left(x^3-2\right)}{3x^3\left(x^3+3\right)^2\left(x^3+2\right)}\)
\(=\frac{4\left(x^3+3+2\right)}{x^2\left(x^3+3\right)^2}:\frac{12x\left(x^3-2\right)}{3x^3\left(x^3+3\right)^2\left(x^3+2\right)}=\frac{\left(x^3+5\right)\left(x^3+2\right)}{x^3-2}\)
Mình làm câu a thôi nhé! Rút gọn xong muốn tắt thở luôn à
Giải:
\(\frac{1+3x}{6}-\frac{2+x}{9}=-4+x\)
\(\text{⇔}\frac{3+9x}{18}-\frac{4+2x}{18}=-\frac{72}{18}+\frac{18x}{18}\)
\(\text{⇔}3+9x-4+2x=-72+18x\)
\(\text{⇔}3+9x-4+2x+72-18x=0\)
\(\text{⇔}71-7x=0\)
\(\text{⇔}x=\frac{71}{7}\)
Vậy...
Chúc bạn học tốt@@