K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

Bạn tk câu này mình làm rồi:

Cho ΔABC nhọn, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.CMR:a) DE=AH.SinAb) Cho AI là phân giác g... - Hoc24

nhớ đổi điểm I thành điểm D

https://olm.vn/hoi-dap/detail/273894454691.html

12 tháng 3 2021

Qua D kẻ đường thẳng song song với AB cắt AC tại E.

Dễ thấy tam giác AED vuông cân tại E nên \(\dfrac{AD}{\sqrt{2}}=AE=ED\).

Theo định lý Thales ta có: \(\dfrac{DE}{AB}=\dfrac{CE}{CA}=1-\dfrac{AE}{CA}=1-\dfrac{DE}{CA}\Rightarrow\dfrac{1}{DE}=\dfrac{1}{AB}+\dfrac{1}{AC}\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AB}+\dfrac{1}{AC}\).

Vậy ta có đpcm.

12 tháng 3 2021

Bài này mình làm rồi mà bạn

6 tháng 12 2021

Sửa: CMR: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)

\(DH\perp AB\Rightarrow DH\text{//}AC\\ AD\text{ là p/g}\Rightarrow\widehat{CAD}=\widehat{BAD}=90^0\\ \Rightarrow\Delta ADH\text{ vuông cân tại }H\\ \Rightarrow DH=AH\\ DH\text{//}AC\Rightarrow\dfrac{DH}{AC}=\dfrac{BH}{AB}\Rightarrow\dfrac{AH}{AC}=\dfrac{AB-AH}{AB}\\ \Rightarrow\dfrac{AH}{AC}=1-\dfrac{AH}{AB}\\ \Rightarrow\dfrac{AH}{AC}+\dfrac{AH}{AB}=1\\ \Rightarrow AH\left(\dfrac{1}{AB}+\dfrac{1}{AC}\right)=1\\ \Rightarrow\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AH}\)

Lại có \(\Delta AHD\text{ vuông cân tại }H\Rightarrow AD=\sqrt{AH^2+HD^2}=\sqrt{2AH^2}=AH\sqrt{2}\)

\(\Rightarrow AH=\dfrac{AD}{\sqrt{2}}\\ \Rightarrow\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{\dfrac{AD}{\sqrt{2}}}=\dfrac{\sqrt{2}}{AD}\left(đpcm\right)\)

23 tháng 6 2021

Kẻ \(AH\perp BC\) tại H

Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\)

Áp dụng hệ thức lượng vào tam giác vuông AED có:

\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))

\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)

Vậy...