K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

\(\dfrac{x^2-2xy+y^2}{x^2-xy}=\dfrac{\left(x-y\right)^2}{x\left(x-y\right)}=\dfrac{x-y}{x}\)

\(\dfrac{x^2-4}{3x+6}=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x-2}{3}\)

19 tháng 10 2021

a. \(\dfrac{x^2-2xy+y^2}{x^2-xy}=\dfrac{\left(x-y\right)^2}{x\left(x-y\right)}=\dfrac{x-y}{x}\)

b. \(\dfrac{x^2-4}{3x+6}=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x-2}{3}\)

14 tháng 11 2021

\(a,ĐK:x\ne3;x\ne-2\\ b,A=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+2\right)}=\dfrac{x-3}{x+2}\\ c,A\in Z\Leftrightarrow\dfrac{x+2-5}{x+2}=1-\dfrac{5}{x+2}\in Z\\ \Leftrightarrow x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-7;-3;-1;3\right\}\left(tm\right)\)

8 tháng 12 2021

ĐK: \(3x\ne\pm y;x\ne0\)

A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)

\(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)

Thay x = 1; y=2, ta có:

A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)

23 tháng 10 2021

\(a,=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\\ b,=\dfrac{\left(x+y\right)^2-16}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)

23 tháng 10 2021

a, \(\left(a+5\right)^2+2\left(a+5\right)\left(\dfrac{1}{2}-a\right)+\left(\dfrac{1}{2}-a\right)^2=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\)

b,\(\dfrac{x^2-16+2xy+y^2}{3x^2-12x+3xy}=\dfrac{\left(x^2+2xy+y^2\right)-4^2}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)

26 tháng 10 2021

a) \(=\dfrac{-x^2+2xy-y^2}{x^2-xy}=\dfrac{-\left(x-y\right)^2}{x\left(x-y\right)}=\dfrac{-x+y}{x}\)

b) \(=\dfrac{x^4-1}{2x-2}=\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{2\left(x-1\right)}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{2\left(x-1\right)}=\dfrac{x^3+x^2+x+1}{2}\)

15 tháng 10 2021

a: \(\dfrac{x^3-x}{3x+3}=\dfrac{x\left(x-1\right)\left(x+1\right)}{3\left(x+1\right)}=\dfrac{x\left(x-1\right)}{3}\)

b: \(\dfrac{x^2-4xy+4y^2-4}{2x^2-4xy+4x}\)

\(=\dfrac{\left(x-2y\right)^2-4}{2x\left(x-2y+2\right)}\)

\(=\dfrac{x-2y-2}{2x}\)

26 tháng 2 2022

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(P=\dfrac{4k^2-2k.3k+9k^2}{4k^2+2k.3k+9k^2}=\dfrac{13k^2-6k^2}{13k^2+6k^2}=\dfrac{7k^2}{19k^2}=\dfrac{7}{19}\)

9 tháng 11 2021

\(=\dfrac{\left(x-1\right)^3}{xy\left(x-1\right)-\left(x-1\right)}=\dfrac{\left(x-1\right)^3}{\left(xy-1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{xy-1}\left(xy\ne1;x\ne1\right)\)

3 tháng 6 2021

  \(\dfrac{3x+2}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{x^2+2x+1}\)

\(\dfrac{3x+2}{\left(x-1\right)^2}-\dfrac{6}{\left(x-1\right)\left(x+1\right)}-\dfrac{3x-2}{\left(x+1\right)^2}\)

\(\dfrac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\dfrac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)^2}-\dfrac{\left(3x-2\right)\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}\)

\(\dfrac{3x^3+8x^2+7x+2}{\left(x^2-1\right)^2}-\dfrac{6x^2-6}{\left(x^2-1\right)^2}-\dfrac{3x^3-8x^2+7x-2}{\left(x^2-1\right)^2}\)

\(\dfrac{10x^2+10}{\left(x^2-1\right)^2}\)

\(\dfrac{10\left(x^2+1\right)}{\left(x^2-1\right)^2}\)

27 tháng 5 2017

\(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}.\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right]:\dfrac{x-y}{x}\)

= \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\cdot\dfrac{x^3-y^3}{xy}\right)\cdot\dfrac{x}{x-y}\)

= \(\dfrac{\left(x^2-y^2\right)\left(x+y\right)-x^3+y^3}{xy\left(x+y\right)}\cdot\dfrac{x}{x-y}\)

= \(\dfrac{xy\left(x-y\right)}{y\left(x+y\right).\left(x-y\right)}\)

= \(\dfrac{x}{x+y}\)