Cho M thuộc BC của tam giác ABC. Kẻ MN //AC (N thuộc AB) và MP // AB (P thuộc AC)
a.Tứ giác ANMP là hình gì và vì sao
b.M ở vi trí nào trên BC để tứ giác ANMP là hình thoi
c.Tam giác ABC cần phải có đk gì để ANMP là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A
=> \(\Delta ABC\)vuông tại A
Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A
d) Để tứ giác ANMP là hình vuông thì:
+ Tứ giác ANMP phải là hình thoi
+ Tứ giác ANMP có 1 góc vuông
(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)
Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)
Hok tốt ~
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MN//AC
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB
Do đó: P là trung điểm của AC
Xét ΔABC có
N,P lần lượt là trung điểm của AB,AC
=>NP là đường trung bình của ΔABC
=>NP//BC và NP=BC/2
=>NP//MH
Ta có: ΔHAC vuông tại H
mà HP là đường trung tuyến
nên HP=AP
mà AP=MN(ANMP là hình chữ nhật)
nên HP=MN
Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang
Hình thang MHNP có MN=HP
nên MHNP là hình thang cân
Mink trình bày theo ý hiểu nhé
Vì MN // AC và MP // AB, ta có các cặp góc tương đương:
=>Góc MNP = Góc BAC (do MN // AC và MP // AB)
=>Góc ANM = Góc ABC (do MN // AC và tam giác ANM là tam giác đồng dạng với tam giác ABC)
=>Góc NPA = Góc MAC (do MP // AB và tam giác MNP là tam giác đồng dạng với tam giác MAB)
Ta có cặp góc tương đương: Góc PAM = Góc CAB (do MP // AB)
=> cặp góc đối nhau: Góc MNP = Góc BAC và Góc PAM = Góc CAB; Góc MNP = Góc PAM và Góc NPA = Góc ANM.
Vậy tứ giác ANMP là hình bình hành.
b) Để đoạn thẳng NP là nhỏ nhất, điểm M nằm ở trung điểm của BC.
Khi M nằm ở trung điểm của BC (hay AM = MC), ta có tứ giác ANMP là hình bình hành với đường chéo NP.
Trong hình bình hành, đoạn thẳng NP (đoạn chéo) là cực tiểu khi nó bằng chiều cao kẻ từ đỉnh A xuống đoạn thẳng BC. Khi M nằm ở trung điểm của BC, thì AM = MC, tức là đoạn thẳng NP chính là chiều cao của tam giác ABC kẻ từ đỉnh A xuống BC.
Vậy để NP là nhỏ nhất, điểm M phải nằm ở trung điểm của BC.