Cho ΔABC vuông tại A, đường cao AH, trên cạnh AB lấy E, trên cạnh AC lấy F sao cho HE vuông góc với HF tại H (H∈BC, E∈AB, F∈AC). Chứng tỏ trung điểm của đoạn thẳng EF nằm trên 1 đường thẳng cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB có
EM là đường cao
EM là đường trung tuyến
Do đó: ΔAEB cân tại E
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
a: Xét ΔEAB có
EM vừa là đường cao, vưa là trung tuyến
=>ΔEAB cân tại E
b: Xét ΔEBD và ΔEAF có
EB=EA
góc DBE=góc AFE
BD=AF
=>ΔEBD=ΔEAF
=>ED=EF
=>EF>DF/2
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
=>BF=BC
c: Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>DF=AC
Ta có: AE+EC=AC
DE+EF=DF
mà AE=DE(ΔBAE=ΔBDE)
và AC=DF
nên EC=EF
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>DE\(\perp\)BC
Xét ΔEAF vuông tại A và ΔEDC vuông tại E có
EA=ED
EF=EC
Do đó: ΔEAF=ΔEDC
=>\(\widehat{AEF}=\widehat{DEC}\)
mà \(\widehat{DEC}+\widehat{DEA}=180^0\)(hai góc kề bù)
nên \(\widehat{DEA}+\widehat{AEF}=180^0\)
=>D,E,F thẳng hàng
Gọi G là trung điểm AH, I là trung điểm EF, MN là đtb tg ABC
Dễ thấy NG//BC;MG//BC nên M,N,G thẳng hàng
Xét tg AEF và tg HEF có AI;HI là trung tuyến ứng vs ch EF nên \(AI=HI=\dfrac{1}{2}EF\)
Do đó tg AIH cân tại I
Mà IG là trung tuyến (G là trung điểm AH) nên IG là đg cao hay \(IG\perp AH\left(1\right)\)
Xét tg AHB vuông tại H có HM là trung tuyến ứng ch AB nên \(AM=HM=\dfrac{1}{2}AB\)
Do đó tg AHM cân tại M
Mà MG là trung tuyến (G là trung điểm AH) nên MG là đg cao hay \(MG\perp AH\left(1\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow MG//GI\)
Từ đó ta được M;G;I thẳng hàng
Do đó I;M;N thẳng hàng
Vậy trung điểm EF là I nằm trên đt cố định là đường trung bình MN của tg ABC