viết đa thức sau dưới dạng một phân thức đại số với tử và mẫu là đa thức có hai hạng tử
B=<x+1><x mũ 2+1><x mũ 4 +1>......<x mũ 32+1>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^6-x^4+x^2-1=x^4(x^2-1)+(x^2-1)=(x^2-1)(x^4+1)$
$=\frac{(x^2-1)(x^2+1)(x^4+1)}{x^2+1}=\frac{(x^4-1)(x^4+1)}{x^2+1}=\frac{x^8-1}{x^2+1}$
(Tách -4x = 6x – 10x để nhóm với 3x2 xuất hiện x + 2)
⇔ x + 2 ∈ Ư(3) = {±1; ±3}
+ x + 2 = 1 ⇔ x = -1
+ x + 2 = -1 ⇔ x = -3
+ x + 2 = 3 ⇔ x = 1
+ x + 2 = -3 ⇔ x = -5
Vậy với x = ±1 ; x = -3 hoặc x = -5 thì phân thức có giá trị nguyên.
⇔ x – 3 ∈ Ư(8) = {±1; ±2; ±4; ±8}
+ x – 3 = 1 ⇔ x = 4
+ x – 3 = -1 ⇔ x = 2
+ x – 3 = 2 ⇔ x = 5
+ x – 3 = -2 ⇔ x = 1
+ x – 3 = 4 ⇔ x = 7
+ x – 3 = -4 ⇔ x = -1
+ x – 3 = 8 ⇔ x = 11
+ x – 3 = -8 ⇔ x = -5.
Vậy với x ∈ {-5; -1; 1; 2; 4; 5; 7; 11} thì giá trị phân thức là số nguyên.
a, \(\frac{2x+1}{2x^2-5x-3}\)
b, \(\frac{2x+1}{2x^2-5x-3}\)
\(=\frac{2x+1}{2x^2+x-6x-3}\)
\(=\frac{2x+1}{x\left(2x+1\right)-3\left(2x+1\right)}\)
\(=\frac{2x+1}{\left(2x+1\right)\left(x-3\right)}\)
\(=\frac{1}{x-3}\)
Giả sử ta có : A(x) = 3x + 67 ; B(y) = y2 - 11 + 2y3
Thì : A(1) = 3.1 + 67 = 70
B(1) = 12 - 11 + 2.13 = - 8
Vậy thì tổng các hệ số của hạng tử trong đa thức chính là tổng các hạng tử của đa thức có biến là 1 .
Sau đó thì bạn thay 1 vào P(x) rồi tìm được kết quả là 1
Cái chính là hiểu bạn chất vấn đề , còn chỗ giả sử kia không phải ghi vào vở đâu nhé !
Chúc bạn học chăm !!!