K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

a) Ta có: \(a^2+1\ge2a\)

Tường tự \(b^2+1\ge2b\)\(c^2+1\ge2c\)

Vì \(a^2+1\ge0\);\(b^2+1\ge0\);\(c^2+1\ge0\)nên ta:

Nhân vế theo vế của 3 bất đẳng thức cùng chiều ta được điều phải chứng minh

b) \(a^2+2^2\ge4a\)bạn làm tương tự như câu a) là ra nha!

8 tháng 2 2020

Ta có: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\ge4abcd\)

b) \(a^2+1\ge2a,b^2+1\ge2b,c^2+1\ge2c\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)

c) \(a^2+4\ge4a,b^2+4\ge4b,c^2+4\ge4c,d^2+4\ge4d\)

\(\Rightarrow\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)

8 tháng 2 2020

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)

b) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a\cdot2b\cdot2c=8abc\)

c) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a\cdot4b\cdot4c\cdot4d=256abcd\)

28 tháng 2 2020

a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)

b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)

Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)

=>đpcm. Dấu bằng xảy ra khi a=b

c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)

Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

27 tháng 6 2021

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

27 tháng 6 2021

ok

a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)

\(A=\left[\left(3x+1\right)-\left(5x+5\right)\right]^2\)

\(A=\left(-2x-4\right)^2\)

30 tháng 9 2017

A = (3x + 1)2 - 2(3x + 1)(5x + 5) + (5x + 5)2

= [(3x + 1)-(5x + 5)]2

= (3x + 1 - 5x - 5)2

= [(-2x) - 4]2

B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=> (3 - 1)B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=>2B = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (38 - 1)(38 + 1)(316 +1)(332 + 1)

= (316 - 1)316 +1)(332 + 1)

= (332 - 1)(332 + 1)

= 364 - 1

vì 2B = 364 - 1

=> B = \(\dfrac{3^{64}-1}{2}\)

C = a2 + b2 + c2 + 2ab - 2ac - 2bc + a2 + b2 + c2 - 2ab + 2ac - 2bc - 2( b2 - 2bc + c2)

= 2a2 + 2b2 + 2c2 - 4bc - 2b2 + 4bc - 2c2

= 2a2