K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

có sai đề ko bạn ? mik thấy nó ko theo quy luật nào hết

15 tháng 2 2020

Hình như đề sai rồi bn ơi
Mk đoán như z mới đúng:

x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 2018 ) + ( x + 2019 ) = 2019

11 tháng 3 2019

gọi x+[x+1]+[x+2]+...+2018+2019=0là A

2A=[X+2019]+..+[2019+X]=0

=>X LÀ SỐ ĐỐI CỦA 2019 

=>X=-2019

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gtx2xy(5x5y)x+8=0(xy)(x5)(x5)=3(5x)(xy1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT

24 tháng 3 2021
Chịu nha bạn
27 tháng 2 2020

x=−2018x=−2018

Giải thích các bước giải:

Ta có:

x+(x+1)+(x+2)+(x+3)+.......+2018+2019=2019x+(x+1)+(x+2)+(x+3)+.......+2018+2019=2019

⇒x+(x+1)+(x+2)+(x+3)+.......+2018=0⇒x+(x+1)+(x+2)+(x+3)+.......+2018=0

Số số hạng là: Số cuối−Số đầuKhoảng cách+1=2018−x1+1=2019−xSố cuối−Số đầuKhoảng cách+1=2018−x1+1=2019−x

Trung bình cộng: Số đầu+số cuối2=2018+x2Số đầu+số cuối2=2018+x2

Như vậy ta được:

(2019−x)2018+x2=0(2019−x)2018+x2=0

⇒2019−x=0⇒x=2019⇒2019−x=0⇒x=2019 (loại) (vì nếu x=2019 thì số số hạng là 0) hoặc 2018+x=0⇒x=−20182018+x=0⇒x=−2018

Vậy x=-2018

5 tháng 3 2020
  •  

x+(x+1)+(x+2)+...+(x+2018)+(x+2019)=2019x+(x+1)+(x+2)+...+(x+2018)+(x+2019)=2019
⇔2020x+(1+2+...+2019)=2019

⇔2020x+(1+2+...+2019)=2019
⇔2020x+(2019+1).2019/2=2019

⇔2020x+(2019+1).2019/2=2019
⇔2020x+2039190=2019

⇔2020x+2039190=2019
⇔x≈−1008

a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)

Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)

Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)

Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)

\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)

\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)

Vậy \(y=5;x=2019\)

\(y=-5;x=2019\)