chứng minh mệnh đề: tồn tại số n thuộc N sao cho 2^n - 1 chia hêt cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.
b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.
1. Đề sai với $n=1$.
2.
Nếu $n$ chẵn thì hiển nhiên $n(n+5)\vdots 2$
Nếu $n$ lẻ thì $n+5$ chẵn $\Rightarrow n(n+5)\vdots 2$
Vậy $n(n+5)\vdots 2$ với mọi $n\in\mathbb{N}$
3.
Vì $n+7, n+8$ là 2 số tự nhiên liên tiếp nên trong 2 số này sẽ có 1 số chẵn và 1 số lẻ.
$\Rightarrow (n+7)(n+8)\vdots 2$
$\Rightarrow (n+3)(n+7)(n+8)\vdots 2(1)$
Lại có:
Nếu $n\vdots 3\Rightarrow n+3\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 1 thì $n+8\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 2 thì $n+7\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Vậy $(n+3)(n+7)(n+8)\vdots 3(2)$
Từ $(1); (2)$ mà $(2,3)=1$ nên $(n+3)(n+7)(n+8)\vdots 6$
Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Bài làm:
Đặt A =m5(10a + b) - (a + 5b)
= 50a + 5b - a - 5b
= 49a
Do 49 chia hết cho 7
=> A chia hết cho 7 nên:
Nếu a + 5b chia hết cho 7 => 5(10a + b) chia hết cho 7, (5, 7) = 1 => 10a + b chia hết cho 7 (1)
Nếu 10 + b chia hết cho 7 => 5(10a + b) chia hết cho 7 => a + 5b chia hết cho 7 (2)
Từ (1) và (2) ta được quyền suy ra: Nếu a + 5b chia hết cho 7 thì 10a + b chia hết cho 7, mệnh đề này đảo lại cũng đúng.
ta có
(a+5b) chia hết cho 7
-> 10 (a+5b) chia hết cho 7
-> 10a+50b chia hết cho 7
-> 10a+b+49b chia hết cho 7
-> 10a+b chia hết cho 7 vì 49b chia hết cho7
ta có
10a+b chia hết cho7
->10 a +50b-49b chia hết cho7
->10(a+5b) -49b chia hết cho 7
-> 10(a+5b) chia hết cho 7
vậy mệnh de dao nguoc k dung
2n - 1 chia hết cho 7
Vì có n = 3 thì 2n - 1 chia hết cho 7