Cho hệ bất phương trình : \(\hept{\begin{cases}x^2-6x+5\le0\\x^2-2\left(a+1\right)x+a^2+1\le0\end{cases}}\) Để hệ bất phương trình có nghiệm , giá trị của a là :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+m\le0\\-x+5< 0\end{cases}\hept{\begin{cases}x\le-m\\x< -5\end{cases}\hept{\begin{cases}x\in\left(-\infty;-m\right)\\x\in\left(-\infty;-5\right)\end{cases}}}}\)bạn sửa lại chỗ trên nha là nửa khoảng
\(+-m\ge-5\)
\(m\le5< =>\)tập nghiệm của HPT \(S=\left(-m;-\infty\right)\)
\(+-m< 5\)
\(m>5< =>\)tập nghiệm của HPT \(S=\left\{-\infty;-5\right\}\)
\(\hept{\begin{cases}x^2-3x-4\le0\left(1\right)\\x^3-3\left|x\right|\cdot x-m^2+6m\ge0\left(2\right)\end{cases}}\)
(1) có tập nghiệm là [-1;1]
(2) <=> \(x^3-3\left|x\right|\cdot x\ge m^2-6m\)
Xét đồ thị hàm số \(y=x^3-3\left|x\right|\cdot x=\hept{\begin{cases}x^3-3x^2\left(x\ge0\right)\\x^3+3x^2\left(x\le0\right)\end{cases}}\)trên [-1;4]
Trên đồ thị hàm số ta thấy đường thẳng y=m2-6m (m là tham số) có vị trí "ở dưới" đồ thị \(y=x^3-3\left|x\right|\cdot x\)thì \(m^2-6m\le16\) lúc đó hệ bất phương trình đã cho có nghiệm
\(m^2-6m\le16\Leftrightarrow m^2-6m-16\le0\Leftrightarrow-2\le m\le8\)
\(\begin{cases}x^2+7x-8\le0\\a^2x+1>3+\left(3a-2\right)x\end{cases}\) (1)
\(\Leftrightarrow\) \(\begin{cases}x^2+7x-8\le0\\\left(a^2-3a+2\right)x>2\end{cases}\)
ta đặt
\(x^2+7x-8\le0\) (a)
\(\left(a^2-3a+2\right)x>2\) (b)
(1) Vô nghiệm khi và chỉ khi T(a)\(\cap\)T(b) = \(\varnothing\)
Dễ thấy T(a) = \(\left[-8;1\right]\). Đặt m:=\(a^2-3a+2\), xét các trường hợp sau :
- Nếu a=1 hoặc a=2 thì
\(\left(a^2-3a+2\right)x>2\) \(\Leftrightarrow\) 0.x > 2 \(\Rightarrow\) T ( b) = \(\varnothing\) nên (1) vô nghiệm
- Nếu \(a\in\left(-\infty;1\right)\cup\left(2;+\infty\right):=\)(*) thì m >0 nên T(b) có nghiệm \(x>\frac{2}{m}\) Ta có :
T(a)\(\cap\) T(b) = \(\varnothing\) \(\Leftrightarrow\) \(\frac{2}{m}\ge1\)
\(\Leftrightarrow\) \(2\ge m=a^2-3a+2\) ( do m>0 trong (*)
\(\Leftrightarrow\) \(a^2-3a\le0\) \(\Leftrightarrow\) \(0\le a\le3\)
Kết hợp với điều kiện \(a\in\)(*) được \(0\le a<1\) hoặc 2<a\(\le\)3
- Nếu \(a\in\)(1;2) thì m<0 nên T(b) có nghiệm \(x<\frac{2}{m}\) Ta có T(a)\(\cap\) T(b) = \(\varnothing\) \(\Leftrightarrow\) \(\frac{2}{m}\le-8\)
\(\Leftrightarrow\) \(2\ge-8m=-8\left(a^2-3a+2\right)\) (do m<0 trong (1;2)
\(\Leftrightarrow\) \(4a^2-12a+9\ge0\) \(\Leftrightarrow\) \(\left(2a-3\right)^2\ge0\) luôn đúng
Vậy với \(a\in\)(1;2) thì (1) vô nghiệm. Tóm lại ta được 0\(\le a\le\)3 là các giá trị cần tìm
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\) (1)
Xét các bất phương trình thành phần
\(\left(x^2-1\right)\left(x-2\right)\ge0\) (a)
\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\) (b)
Ta có T(1)=T(a)\(\cap\) T(b)
Lập bảng xét dấy
\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
x | -\(\infty\) -1 1 2 +\(\infty\) |
f(x) | - 0 + 0 - 0 + |
Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)
Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1
- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)
Xét các trường hợp sau :
+ Trường hợp 1 :
\(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
+ Trường hợp 2
\(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)
+ Trường hợp 3
\(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\) \(\Leftrightarrow\) \(\frac{1}{2}\le a\le1\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Trường hợp 4
1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)
+ Trường hợp 5 :
a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)
Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm
Từ đó ta kết luận :
+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)
+ Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)
+ Khi 0<a<\(\frac{1}{2}\) hệ có tập nghiệm T(1) = \(\left[a;1\right]\)
+ Khi \(\frac{1}{2}\)\(\le\)a \(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)
\(x^2-6x+5\le0\Leftrightarrow1\le x\le5\)
Hệ đã cho có nghiệm khi \(f\left(x\right)=x^2-2\left(a+1\right)x+a^2+1\le0\) có nghiệm thuộc \(\left[1;5\right]\)
\(\Delta'=\left(a+1\right)^2-a^2-1=2a\)
TH1: \(\left\{{}\begin{matrix}\Delta'=0\\a+1\in\left[1;5\right]\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\a+1\in\left[1;5\right]\end{matrix}\right.\) thỏa mãn
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\\left[{}\begin{matrix}f\left(1\right)\le0\\f\left(5\right)\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\left[{}\begin{matrix}a^2-2a\le0\\a^2-10a+16\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow0\le a\le8\)
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))