Giải hệ pt
\(\int^{xy+x+y=2+3\sqrt{2}}_{x^2+y^2=6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
với x=0 thì không là nghiệm của hệ phương trình
xét x\(\ne\)0 thì chia hai vế của pt(2) cho x thì ta được \(y=\frac{3}{x}+x\) và thay \(xy=3+x^2\) vào
pt (1)
\(\sqrt{x^2-3}=12-\left(\frac{3}{x}+x\right)^2=-\left(\frac{3}{x}-x\right)^2\le0\)
do đó x2=3
tới đây tự làm là ngon
a) x=3
y=\(\frac{3}{2}\)
b) x=0,4082482905
y=-0,7071067812
Trình bày em không biết vì em mới học lớp 7. kết quả đó là của máy tính fx-570ES PLUS ra
1/2x-1/3y=1
5x-8y=3
Ta sẽ biến đổi để đưa hệ về các hệ số của cùng 1 ẩn .ta nhan hệ 1 với 5 va hệ 2 voi 1/2.ta có hệ mới
5/2x-1/3y=1
5/2x-8y=3
=> dùng phương pháp thế rút x theo y rồi ra
x:=3;
y:=3/2;
b)
xxta có hệ
5\(\sqrt{3}\)x+y=2\(\sqrt{2}\)
\(\sqrt{6}\)x-\(\sqrt{2}\)y=2;
=>tiếp tục dùng phương pháp thế rút y theo x như phần a
ta có:x=0,4082482950
y=-0,7071067812
Ê Ngọc Liên bài bạn làm thế này nhé
Với n=5k
=>\(n^2+n+6=\left(5k\right)^2+5k+6=25k^2+5k+5+1\) không chia hết cho 5(vì 1 ko chia hết cho 5)
Với n=5k+1
\(n^2+n+6=\left(5k+1\right)^2+5k+1+6=25k^2+10k+1+5k+1+6\)
\(25k^2+15k+5+3\) không chia hết cho 5
Với n=5k+2
\(n^2+n+6=25k^2+25k+5+7\)không chia hết cho 5
Các TH còn lại làm tương tự nha
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
Đặt (x + y) = a; xy = b thì hệ thành
a + b = \(2+3\sqrt{2}\)và a2 - 2b = 6
Giờ rút b theo a rồi thế vô phương trình còn lại. Giải phương trình bậc 2 thôi.
cái tick này mình để cho ai giải đc bài này
Đặt S = x+y
P =xy
=> S+P =2+3\(\sqrt{2}\)=>P=3+3\(\sqrt{2}\)-S
S2 - 2P =6=>S2-6-6\(\sqrt{2}\)+2S =6
\(S^2+2S+1=13+6\sqrt{2}\)
\(S=-1+-\sqrt{13+6\sqrt{2}}\)
LẺ nhỉ
thui không làm nữa