K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

| 3x - 2 | - 2x = -1

| 3x -2 | = -1 + 2x

TH1 : 3x - 2 = -1 + 2x

3x - 2x = -1 + 2

x = 1

TH2 : 3x - 2 = 1 - 2x

3x + 2x = 1 + 2

5x = 3

x = 3/5

 Vậy x=1 hoặc x = 3/5

Hok tốt!!!!!

27 tháng 1 2020

Ta có :

\(\left(2x^2-3x+1\right)-\left(2x^2-3x+4\right)=0\)

\(\Leftrightarrow2x^2-3x+1-2x^2+3x-4=0\)

\(\Leftrightarrow-3=0\left(ktm\right)\)

\(\Leftrightarrow x\in\varnothing\)

28 tháng 10 2019

\(|2x^2-3x+4|-|2x-x^2-1|=0\)

\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)

Vậy ...

31 tháng 10 2019

\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)

\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(TH1:3x^2-5x+5=0\)

Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)

\(TH2:x^2-x+3=0\)

Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)

Vậy pt vô nghiệm

27 tháng 3 2019

\(\frac{2}{3}x-\frac{1}{2}x=\frac{5}{2}\)

=>\(x\left(\frac{2}{3}-\frac{1}{2}\right)=\frac{5}{2}\)

=>\(x\left(\frac{4}{6}-\frac{3}{6}\right)=\frac{5}{2}\)

\(x.\frac{1}{6}=\frac{5}{2}\)

\(x=\frac{5}{2}:\frac{1}{6}\)

\(x=\frac{5}{2}.6\)

\(x=15\)​(Rút gọn nha!!!)

5 tháng 10 2021

48∈B(2x+1)

⇒48⋮2x+1

⇒2x+1∈Ư(48)

Ư(48)={1;2;3;4;6;8;12;16;24;48}

⇒x∈{0;1}

\(2x+1\inƯ\left(48\right)\)

\(\Leftrightarrow2x+1\in\left\{1;3\right\}\)

hay \(x\in\left\{0;1\right\}\)

30 tháng 5 2021

a) x/-2=-4/y=2/4

*x/-2=2/4=>4x=(-2)x2=>x=-1

*-4/y=2/4=>(-4)x4=2y=>y=-8

b)2/x=y/-3

=>xy=-6(câu này đề hơi lạ)

c) x+1/2=8/x+1

=>16=(x+1)(x+1)=>x^2+2x+1=16=>(x+1)^2=16=>(x+1)^2=4^2=>x+1=4=>x=3

Đề nghị viết lại đề

a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)

\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)

\(=\left(x^2+9x+19\right)^2\)

24 tháng 8 2021

b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left(x-y-2\right)^2\)

d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)

\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+y+1\right)^2\)

10 tháng 10 2021

tách nhỏ câu hỏi ra

10 tháng 10 2021

1. -3(-x+3)

= 3x - 6

2. -5x3 (-3x + 5)

= 15x4 - 25x3

3. -2x (-2x - 6)

= 4x2 + 12x

 

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi