K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

a) Ta suy ra điểm K nằm giữa hai điểm B, C nên tia AK nằm giữa hai tia ABAC.

Tương tự, ta có điểm I nằm giữa hai điểm A, C nên tia BI nằm giữa, hai tia BA, BC.

b) Từ câu b), ta suy ra tia BI nằm giữa hai tia BA,BK nên tia BI cắt đoạn thẳng AK tại một điểm nằm giữa AK.

Lập luận tương tự, ta có tia AK cắt đoạn thẳng BI tại một điểm nằm giữa BI. Từ đó suy ra hai đoạn thẳng AKBI cắt nhau.

15 tháng 8 2017

a) Vì hai điểm A, B nằm trên hai nửa mặt phẳng đối nhau bờ m nên đoạn thẳng AB cắt đường thẳng m.

b) Từ câu a), ta suy ra điểm K nằm giữa hai điểm B, C  nên tia AK nằm giữa hai tia AB và AC.

Tương tự, ta có điểm I nằm giữa hai điểm A, C nên tia BI nằm giữa, hai tia BA, BC.

c*) Từ câu b), ta suy ra tia BI nằm giữa hai tia BA,BK nên tia BI cắt đoạn thẳng AK tại một điểm nằm giữa A và K.

Lập luận tương tự, ta có tia AK cắt đoạn thẳng BI tại một điểm nằm giữa B và I. Từ đó suy ra hai đoạn thẳng AK và BI cắt nhau.

23 tháng 4 2018

A B C D E H I O M N K d F G x y Q S

Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M 

Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.

Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD

\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB

=> ^SBF=2. ^BDS .

\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét \(\Delta\)OIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

ΔAEC=ΔABD (c.g.c) => EC=BD

ΔEMC=ΔSMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB

=> ^SBF=2. ^BDS .

ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét ΔOIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

Vẽ hình theo cách diễn đạt bằng lời trong mỗi trường hợp sau đây : a) Nửa mặt phẳng (I) có bờ là đường thẳng t. b) Điểm M thuộc nửa mặt phẳng có bờ là đường thẳng d và điểm N thuộc nửa mặt phẳng đối c) Điểm M thuộc nửa mặt phẳng có bờ là đường thẳng a. Hai điểm M, N nằm khác phía đối với đường thẳng a. Hai điểm N, P nằm khác phía đối với đường thẳng a d) Hai...
Đọc tiếp

Vẽ hình theo cách diễn đạt bằng lời trong mỗi trường hợp sau đây :

a) Nửa mặt phẳng (I) có bờ là đường thẳng t.

b) Điểm M thuộc nửa mặt phẳng có bờ là đường thẳng d và điểm N thuộc nửa mặt phẳng đối

c) Điểm M thuộc nửa mặt phẳng có bờ là đường thẳng a. Hai điểm M, N nằm khác phía đối với đường thẳng a. Hai điểm N, P nằm khác phía đối với đường thẳng a

d) Hai đường thẳng m và n cắt nhau tại điểm O. Điểm A thuộc nửa mặt phẳng bờ là đường thẳng m. Hai điểm A, B ở cùng phía với đường thẳng m nhưng khác phía đối với đường thẳng n. Điểm C vừa thuộc nửa mặt phẳng bờ n có chứa điểm B vừa thuộc nửa mặt phẳng bờ m không chứa điểm A. Điểm D không thuộc nửa mặt phẳng bờ n có chứa điểm B và hai điểm A, D khác phía đối với đường thẳng m 

2
6 tháng 1 2018

Nửa mặt phẳng

Nửa mặt phẳng

Nửa mặt phẳng

Nửa mặt phẳng