K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

Ta có: \(\sqrt{x}+\frac{9}{2}\)nhỏ nhất khi và chỉ khi \(\sqrt{x}\)nhỏ nhất

\(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0.

Khi đó M=\(\frac{9}{2}\)

⇒ M nhỏ nhất bằng \(\frac{9}{2}\)khi và chỉ khi x=0.

Bài 2:

Ta có:

\(N=\frac{1}{\sqrt{x}+3}\) lớn nhất khi và chỉ khi \(\sqrt{x}+3\) nhỏ nhất ⇒\(\sqrt{x}\)nhỏ nhất

Ta có: \(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0. Khi đó N=\(\frac{1}{3}\) ⇒ N lớn nhất bằng \(\frac{1}{3}\)khi và chỉ khi x=0.
12 tháng 2 2020

Cảm ơn bn nhìu!vui

26 tháng 5 2019

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

19 tháng 11 2016

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

19 tháng 11 2016

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

30 tháng 11 2015

Ta có 

\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)

Áp dụng bất đẳng thức cô si cho 2 số không âm ta có

\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)

=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)

dấu bằng xảy ra <=>x=1

 

 

30 tháng 11 2015

tick rui mình làm câu b cho

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3