1.Giải bất phương trình: 3* căn[1-(3/x)] + căn[3x-(27/x)] >= x
2. Tìm m để bất phương trình [(10-m)x^2-2(m+2)x+1]/[căn(x^2-2x+2] < 0 có nghiệm
Cảm ơn nhiều những ai giúp em ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
1) thay m=1 vào pt: \(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
2) theo định lí viets, ta có: x1+x2=2(m+1)
x1x2=2m
\(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=2\)
\(\Leftrightarrow2\left(m+1\right)+2\sqrt{2m}=2\)
tới đây bạn làm tiếp nhé
=>căn 2x1=x2-1
=>2x1=x2^2-2x2+1
=>x2^2-2(x1+x2)+1=0
=>x2^2-2(2m+1)+1=0
=>x2^2=4m+2-1=4m+1
=>\(x_2=\pm\sqrt{4m+1}\)
=>\(x_1=2m+1\pm\sqrt{4m+1}\)
x1*x2=m^2-m
=>m^2-m=4m+1\(\pm2m+1\)
=>m^2-5m-1=\(\pm2m+1\)
TH1: m^2-5m-1=2m+1
=>m^2-7m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
TH2: m^2-5m-1=-2m-1
=>m^2-3m=0
=>m=0; m=3