Cho a>b>0 . Chứng minh :
a, \(a+\frac{4}{b\left(a-b\right)^2}\ge4\)
b, \(a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
Bài hay quá!
Theo bất đẳng thức Cô-Si cho 3 số dương ta có
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\sqrt[3]{\left(1+\frac{1}{a}\right)^4\left(1+\frac{1}{b}\right)^4\left(1+\frac{1}{c}\right)^4}\).
Do đó ta chỉ cần chứng minh \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\) (Lúc đó kết hợp hai bất đẳng thức ta được ngay điều phải chứng minh).
Thực vậy, đầu tiên áp dụng bất đẳng thức Cô-Si cho 3 số dương ta có
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{1}{abc}\ge\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{a^2b^2c^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3.\)
Mặt khác ta có \(2+abc=1+1+abc\ge3\sqrt[3]{abc}\to\frac{1}{\sqrt[3]{abc}}\ge\frac{3}{2+abc}\to\)
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\) (ĐPCM)
Áp dụng BĐT AM-GM ta có:
\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)
\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)
\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)
\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)
\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)
Khi \(a=b=\frac{1}{\sqrt{2}}\)
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Áp dụng BĐT Cô-si cho 3 số dương ta có:
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)
Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)
Theo BĐT Cô - si ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)
(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))
Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)
\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)
\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)
\(\left(2\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)
\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)
\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)
Từ (1) , (2) và (3)
\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)
Chúc bạn học tốt !!!
Lời giải
Áp dụng BĐT AM-GM:
\(\text{VT}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\geq 4\sqrt[4]{1}-1=3\)
Do đó ta có đpcm
Dấu $=$ xảy ra khi $b=1,a=2$
\(a+\frac{4}{b\left(a-b\right)^2}=a-b+b+\frac{4}{b\left(a-b\right)^2}\ge a-b+2\sqrt{\frac{4b}{b\left(a-b\right)^2}}=a-b+\frac{4}{a-b}\ge4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)
b/ \(a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b+1-1\ge4-1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)