Cho tam giác ABC đều nọi tiếp (O). P là 1 điểm thuộc cung BC. AP cắt BC tại Q. CM:
a) \(\frac{PQ}{PB}=\frac{CQ}{AC}\)
b) \(\frac{1}{PQ}=\frac{1}{BP}+\frac{1}{PC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì PB=MP nên tam giác BMP cân
Mà \(\widehat{MPB}\)=\(\widehat{MPC}\)(cùng chắn cung AB = cung AC) =60o
=> tam giác BMP đều
Xét tam giác AMB và tam giác CPB, có: AB=BC, AM=BP, góc MAB = PCB ( cùng chắn cung BP)
=> tam giác AMB = tam giác CPB => AM=CP
=> AP= AM+MP=CP+BP
Bạn Trần Phương LInh làm sai ở chỗ xét hai tam giác
Xét tam giác AMB và tam giác CPB có
AB = BC (tam giác ABC đều )
\(\widehat{ABM}=\widehat{CBP}\) ( CÙNG + \(\widehat{MBC}=60^0\))
MB = BP ( tam giác BMP đều )
=) tam giác AMB = tam giác CPB ( c - g - c )
sorry mn nhé, mn thay dấu = thành và đc k ak, mk vt nhầm nhé, sorry mina nh!!!