Biết độ dài ba cạnh của một tam giác tỉ lệ với 2 ; 5 ; 6 .Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nho nhất ngắn hơn cạnh lớn nhất 14m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi độ dài mỗi cạnh là x,y,z
vì x,y,z thỉ lệ thuận 2;5;9
\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}=\frac{z-x}{9-2}=\frac{14}{7}=2\)
từ \(\frac{x}{2}=2\Rightarrow x=4\)
\(\frac{y}{5}=2\Rightarrow y=10\)
\(\frac{z}{9}=2\Rightarrow z=18\)
vậy x = 4; y = 10; z = 18.
Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (m) (c>b>a>0)
Theo bài ra ta có:
a:b:c=2:5:9⇒a2=b5=c9a:b:c=2:5:9⇒a2=b5=c9
c−a=14c−a=14. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a2=b5=c9=c−a9−2=147=2a2=b5=c9=c−a9−2=147=2
⇒⎧⎩⎨⎪⎪a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18⇒{a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18 (thỏa mãn)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 4m; 10m; 18m
gọi độ dài 3 cạnh của tam giác ấy là a,b,c và chúng lần lượt tỷ lệ với 3;5;7
theo đề ra ta có : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a+b+c=150
áp dụng tính chất của dãy tỷ số bằng nhau :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+4}=\frac{150}{12}=\frac{25}{2}\)
thay số vào rồi tính ạ
Gọi độ dài 3 cạnh tam giác lần lượt là a,b,c
ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\\a+b+c=45\end{matrix}\right.\)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{45}{15}=3\)
\(\dfrac{a}{3}=3\Rightarrow a=9cm\\ \dfrac{b}{5}=3\Rightarrow b=15cm\\ \dfrac{c}{7}=3\Rightarrow c=21cm\)
\(\dfrac{a}{3}\)=\(\dfrac{b}{5}\)=\(\dfrac{c}{7}\)=\(\dfrac{a+b+c}{3+5+7}\)=\(\dfrac{45}{15}\)=3
a= 9; b= 15; c=21
Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (m) (c>b>a>0)
Theo bài ra ta có:
\(a:b:c=2:5:9\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{9}\)
\(c-a=14\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{9}=\frac{c-a}{9-2}=\frac{14}{7}=2\)
\(\Rightarrow\begin{cases}\frac{a}{2}=2\Rightarrow a=2\cdot2=4\\\frac{b}{5}=2\Rightarrow b=2\cdot5=10\\\frac{c}{9}=2\Rightarrow c=2\cdot9=18\end{cases}\) (thỏa mãn)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 4m; 10m; 18m
gọi độ dài 3 cạnh của 1 tam giác là a, b,c (a,b,c>0, m)
+vì độ dài 3 cạnh tỉ lệ với 2;5;9
\(\Rightarrow\) \(\frac{a}{2}\) = \(\frac{b}{5}\) = \(\frac{c}{9}\)
+ vì canh nhỏ nhất ngắn hơn cạnh lớn nhất là 14m
\(\Rightarrow\) c-a= 14
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{c-a}{9-2}\)= \(\frac{14}{7}\)= 2
\(\Rightarrow\) a= 2.2= 4
b= 5.2= 10
c= 9.2= 18
vậy độ dài 3 cạnh của 1 tam giác lần lượt là: 4m; 10m; 18m
Gọi x,y,z là ba cạnh của tam giác (36 > x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 5;6;7 ta có: x 5 = y 6 = z 7
Vì chu vi tam giác bằng 36 nên x+y+z = 36
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 5 = y 6 = z 7 = x + y + z 5 + 6 + 7 = 36 18 = 2
Do đó x = 2.7 = 14
Vậy cạnh nhỏ nhất của tam giác là 14m
Đáp án cần chọn là C