OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho biểu thức: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)
Hãy so sánh \(B^{2017}\&B^{2018}\)
Ta có: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)
\(\Rightarrow16B=1+\frac{2}{16}+\frac{3}{16^2}+....+\frac{2018}{16^{2017}}\)
\(\Rightarrow16B-B=15B=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}-\frac{2018}{16^{2018}}\)
Mà: \(A=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}\)
\(\Rightarrow16A=16+1+\frac{1}{16}+\frac{1}{16^2}+...+\frac{1}{16^{2016}}\)
\(\Rightarrow16A-A=16-\frac{1}{16^{2017}}\)
\(\Rightarrow A=\frac{16-\frac{1}{16^{2017}}}{15}\)
\(\Rightarrow15B=\frac{16-\frac{1}{16^{2017}}}{15}-\frac{2018}{16^{2018}}\)
\(\Rightarrow15B< \frac{16}{15}\)
\(\Rightarrow B< \frac{16}{15^2}< 1\)
\(\Rightarrow B^{2017}>B^{2018}\)
Cảm ơn bạn nhiều :D
\(A=\frac{15}{14}+\frac{16}{15}+\frac{17}{16}+\frac{18}{17}\) SO SÁNH A VỚI 4
\(B=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2018}{2019}\)SO SÁNH B VỚI 3
Hai bài này bạn tính ra là xong mà
Cần gì phải hỏi
Dễ mà
\(A< 4\)
\(B< 3\)
là đáp án đúng
so sánh
a, A=\(\frac{10^{17}-1}{10^{16}-1}vaB=\frac{10^{16}+2}{10^{15}+2}\)
b,\(C=\frac{2017^{15}+1}{2017^{16}+1}vaO=\frac{2017^{16}-1}{2017^{17}-1}\)
c,\(E=\frac{99^{15}-1}{99^{16}-1}vaF=\frac{99^{16}+2}{99^{17}+2}\)
giúp mình với mai phải nộp rồi
cho S=\(\frac{1}{3}\)-\(\frac{2}{3^2}\)+\(\frac{3}{3^3}\)-\(\frac{4}{3^4}\)...+\(\frac{2017}{3^{2017}}\)-\(\frac{2018}{3^{2018}}\).chứng minh S<\(\frac{3}{16}\)
so sánh 2 số A và B nếu
\(A=-\frac{1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4};B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
id nhu 1 tro dua
Bài 1:Tìm số tự nhiên có 4 chữ số sao cho số đó vừa là số chính phương vừa là 1 lập phương
Bài 2: Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}+\frac{1}{2019}\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
Hãy so sánh A/B với 1/2018
A/B>1/2018
\(\frac{A}{B}>\frac{1}{2018}\)
Cho A= \(\frac{2017^{2018}+1}{2017^{2018}-3}\)
B= \(\frac{2017^{2018}-1}{2017^{2018}-5}\)
Hãy so sánh A với B
1) Tìm x , biết :
a) x2 = 2x
b) x3 = x
c) 8x : 2x = 162017
2) Tính : A = ( \(\frac{1}{4}\) - 1 ) ( \(\frac{1}{9}\) - 1 ) ( \(\frac{1}{16}\) - 1 ) ( \(\frac{1}{25}\) - 1 ) ..... ( \(\frac{1}{121}\) - 1 )
3) So sánh A và B , cho :
A=\(\frac{8^{2016+1}}{8^{2017+1}}\) và B = \(\frac{8^{2017+1}}{8^{2018+1}}\)
và B =
So sánh A và B nếu
\(A=\frac{-1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4}\)
\(B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
Cho các phân số \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};\frac{1}{32};\frac{1}{64}\)
a, Tính nhanh tổng các phân số đã cho
b, So sánh tổng đó với phân số \(\frac{2017}{2018}\)
GIẢI CHI TIẾT NHA . MÌNH ĐANG GẤP LẮM . AI NHANH MÌNH TICK
Ta có: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)
\(\Rightarrow16B=1+\frac{2}{16}+\frac{3}{16^2}+....+\frac{2018}{16^{2017}}\)
\(\Rightarrow16B-B=15B=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}-\frac{2018}{16^{2018}}\)
Mà: \(A=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}\)
\(\Rightarrow16A=16+1+\frac{1}{16}+\frac{1}{16^2}+...+\frac{1}{16^{2016}}\)
\(\Rightarrow16A-A=16-\frac{1}{16^{2017}}\)
\(\Rightarrow A=\frac{16-\frac{1}{16^{2017}}}{15}\)
\(\Rightarrow15B=\frac{16-\frac{1}{16^{2017}}}{15}-\frac{2018}{16^{2018}}\)
\(\Rightarrow15B< \frac{16}{15}\)
\(\Rightarrow B< \frac{16}{15^2}< 1\)
\(\Rightarrow B^{2017}>B^{2018}\)
Cảm ơn bạn nhiều :D