K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2015

chtt thì lm sao mà giống đc chỉ là tương tự thôi

2 tháng 4 2017

Ta có

abcdeg = ab.10000+cd.100+eg

              =9999.ab​​+ab+99.cd+cd+eg

              =(9999.ab+99.cd)+(ab+cd+eg)

Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11

1 tháng 3 2018

Ta có : abcdeg = ab10000 + cd100 + eg 

= ( ab + cd + eg) + ( ab9999 + cd99 + eg)

= (ab + cd + eg ) + 11( ab909 + cd9 +eg ) chia hết cho 11

=> abcdeg chia hết cho 11

12 tháng 4 2016

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

12 tháng 4 2016

Ta có : abcdeg=10000ab + 100cd + eg

                     = 9999ab + ab + 99cd+ cd + eg

                     = 9999ab+99cd+(ab+cd+eg)

Vì 9999ab+99cd chia hết cho 11 và đầu bài cho ab+cd+eg chia hết cho 11

=>abcdeg chie hết cho 11

15 tháng 9 2021

Ta có:

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeg=10000¯¯¯¯¯ab+¯¯¯¯¯¯¯¯100cd+¯¯¯¯¯egabcdeg¯=10000ab¯+100¯cd+eg¯

=9999¯¯¯¯¯ab+99¯¯¯¯¯cd+¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg=9999ab¯+99cd¯+ab¯+cd¯+eg¯

=(9999¯¯¯¯¯ab+99¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)=(9999ab¯+99cd¯)+(ab¯+cd¯+eg¯)

=(11.909.¯¯¯¯¯ab+11.9¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)=(11.909.ab¯+11.9cd¯)+(ab¯+cd¯+eg¯)

=11(909.9.¯¯¯¯¯ab.¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)=11(909.9.ab¯.cd¯)+(ab¯+cd¯+eg¯)

Mà: ⎪ ⎪⎪ ⎪11(909.9.¯¯¯¯¯ab.¯¯¯¯¯cd)11(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)11{11(909.9.ab¯.cd¯)⋮11(ab¯+cd¯+eg¯)⋮11

11(909.9.¯¯¯¯¯ab.¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)11⇒11(909.9.ab¯.cd¯)+(ab¯+cd¯+eg¯)⋮11

Hay ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeg11abcdeg¯⋮11 (Đpcm)

15 tháng 9 2021

thanks bn nha

mà hơi dài 1 chút hihi

14 tháng 7 2016

abcdeg = 10000ab + 100cd + eg = 9999ab + ab + 99cd + cd + eg.

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11 nên abcdeg chia hết cho 11.

14 tháng 7 2016

Phân tích abcdeg . Ta có:

abcdeg=10000ab+100cd+eg

          =(ab+9999ab)+(cd+99cd)+eg

          =(ab+cd+eg)+(9999ab+99cd)

          =(ab+cd+eg)+11(909ab+9cd)

vì (ab+cd+eg) chia hết cho 11; 11(909ab+9cd) chia hết cho 11

nên abcdeg chia cho 11

AH
Akai Haruma
Giáo viên
29 tháng 2 2024

Lời giải:

$\overline{abcdeg}=\overline{ab}\times 10000+\overline{cd}\times 100+\overline{eg}$

$=(\overline{ab}+\overline{cd}+\overline{eg})+9999\overline{ab}+99\overline{cd}$

$=(\overline{ab}+\overline{cd}+\overline{eg})+11(909\overline{ab}+9\overline{cd})\vdots 11$ do:

$(\overline{ab}+\overline{cd}+\overline{eg})\vdots 11$ và $11(909\overline{ab}+9\overline{cd})\vdots 11$

8 tháng 1 2023

TK :

Theo tính chất chia hết của một tổng:

(ab + cd + eg) chia hết cho 11 (giả thiết),

⇒ ab hoặc cd hoặc eg chia hết cho 11

⇒ abcdeg chia hết cho 11 (tính chất a ⋮ b, thì ac ⋮ b)

Theo tính chất chia hết cho 11:

abcdeg = ab.10000 + cd.100 + eg

abcdeg = 9999.ab + 99.cd + ab + cd + eg

abcdeg = 9999ab + 99cd + (ab + dc + eg)

Mà 9999ab ⋮ 11, 99cd ⋮ 11, (ab + cd + eg) ⋮ 11

⇒ abcdeg ⋮ 11