K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 2 2020

Lời giải:
Với $a,b,c>0$ dễ thấy $0< \frac{a}{a+2b}< 1$

$\Rightarrow 0< \sqrt{\frac{a}{a+2b}}< 1$

$\Rightarrow \sqrt{\frac{a}{a+2b}}> \frac{a}{a+2b}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

$\text{VT}> \frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\geq \frac{(a+b+c)^2}{a^2+2ba+b^2+2cb+c^2+2ac}=1$

Do đó $\text{VT}>1$ (đpcm)

2 tháng 2 2020

Sử dụng BĐT AM-GM:

\(VT=\sum\limits_{cyc} \sqrt{\frac{a}{a+2b}} =\sum\limits_{cyc} \frac{a}{\sqrt{a(a+2b}}\geq \sum\limits_{cyc} \frac{2a}{2(a+b)}\)

\(=\sum\limits_{cyc} \frac{a^2}{a^2 +ab} \ge \frac{(a+b+c)^2}{a^2+b^2+c^2+ab+bc+ca} >\frac{(a+b+c)^2}{a^2+b^2+c^2+2ab+2bc+2ca} = 1\) (đpcm)

P/s: Em không chắc lắm.

5 tháng 12 2018

\(\hept{\begin{cases}\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}=A\\\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}=B\end{cases}}\)(thật ra cx ko cần đặt,mk đặt làm cho gọn hơn thôi ^^)

Cauchy-Schwarz: \(A\ge\frac{9}{B}\)

Xét: \(B^2\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)=36\)

\(\Rightarrow B\le6\)

\(A\ge\frac{9}{B}\ge\frac{9}{6}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

17 tháng 11 2019

Áp dụng BĐT AM-GM với chú ý: \(a+b,b+c,c+a< a+b+c\) với mọi a, b, c >0.

Ta có:\(VT=\Sigma_{cyc}\frac{a}{\sqrt{a\left(a+2b\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+a+2b}{2}}=\Sigma_{cyc}\frac{a}{a+b}>\Sigma_{cyc}\frac{a}{a+b+c}=1\)

qed./.

18 tháng 11 2019

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

18 tháng 11 2019

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

NV
3 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

12 tháng 10 2015

Theo BĐT Cô - si: 

\(\sqrt{\frac{y+z}{x}.1}\le\left(\frac{y+z}{x}+1\right):2=\frac{x+y+z}{2x}\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\).  Bạn làm tương tự và cộng từng vế sau đó CM không xảy ra dấu bằng