cho tam giác ABC có BC=15cm,đường cao AH=10cm.Một đường thẳng d song song với BC và cắt các cạnh AB và AC theo thứ tự ở D và E
a) Tính SABC
b) Tính DE nếu khoảng cách từ d đến BC bằng 4cm
c) Tính DE nếu DE bằng khoảng cách từ d đến BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào tính chất đường trung bình của tam giác:
DM=EN/2
theo tính chất đương trung bình của hình thang:
EN=(DM+m)/2
Trong ΔABC, ta có: DM // BC (gt)
Nên (Hệ quả định lí Ta-lét)
Suy ra : (3)
Từ (1) và (3) suy ra:
Suy ra:
Trong ΔABC, ta có: EN // BC (gt)
Từ (2) và (4) suy ra: hay
Mình cx ko bik nx tại vì này là thầy mình chụp bài của bên trường gửi qua lớp mình á, này là thầy mình gửi qua á
ABD = EDC (2 góc đồng vị, AB // DE)
mà ABD = ECD (tam giác ABC cân tại A)
=> EDC = ECD
=> Tam giác ECD cân tại E
=> ED = EC
Xét tam giác AFE và tam giác DEF có:
AFE = DEF (2 góc so le trong, AF // DE)
FE chung
FEA = EFD (2 góc so le trong, EA // FD)
=> Tam giác AFE = Tam giác DEF (g.c.g)
=> AE = DF (2 cạnh tương ứng)
mà ED = EC (chứng minh trên)
=> DF + ED = AE + EC = AC = 3 (cm)
Xét ΔAEF và ΔDFE có
góc AEF=góc DFE
EF chung
góc AFE=góc DEF
Do đó: ΔAEF=ΔDFE
Xét ΔEDC có góc EDC=góc ECD
nên ΔEDC cân tại E
=>ED=CE=3-AE
Xét ΔFBD có góc FDB=góc FBD
nên ΔFBD cân tại F
=>FD=FB=3-AF=3-DE=3-EC
ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm