Cho nửa đường tròn tâm O đường kính AB. Trên tia đối của tia AB lấy điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB.
a) CMR: tia CA là tia phân giác ∠MCH
b) giả sử MA=a, MC=2a. Tính AB và CH theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình hơi chênh lệch, bạn thông cảm vì mình vẽ phần mềm hình olm gà lắm
Xét \(\Delta AMC\)và \(\Delta BCM\)có :
\(\widehat{M}\)( chung ) ; \(\widehat{ACM}=\widehat{CBM}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)
\(\Rightarrow\Delta AMC~\Delta CMB\left(g.g\right)\)
\(\Rightarrow\frac{AM}{MC}=\frac{MC}{MB}\Rightarrow MC^2=MA.MB\)
\(\Rightarrow MB=\frac{MC^2}{MA}=4a\)
Ta có : \(AB=MB-AM=4a-a=3a\)
Xét \(\Delta OCM\)có \(OC\perp CM\) :
\(\Rightarrow S_{OCM}=\frac{1}{2}OC.MC=\frac{1}{2}CH.OM\)
\(\Rightarrow CH=\frac{OC.MC}{OM}=\frac{\frac{AB}{2}.MC}{\frac{AB}{2}+AM}=\frac{6}{5}a\)
b)
Tam giác ABC nội tiếp đường tròn đường kính AB
=> Tam giác ABC vuông tại C
\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ với góc BAC)
Lại có: Góc M chung
=> ....
( c = 2a )
Tham khảo : https://baitapsgk.com/lop-9/tai-lieu-day-hoc-toan-9/bai-13-trang-95-tai-lieu-day-va-hoc-toan-9-tap-2-cho-nua-duong-tron-o-duong-kinh-ab-tren-tia-doi-cua-tia-ab-lay-mot-diem-m-ve-tiep-tuyen.html