K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :

\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)

27 tháng 1 2020

Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:

Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)

\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)

 Thôi,đi vào giải quyết bài toán.

Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)

Khi đó BĐT tương đương với:

\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)

Ta cần chứng minh:

\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)

\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\) 

Hình như cái BĐT cuối đúng thì phải ạ.

Dấu "=" xảy ra tại a=b=c=1

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không?...
Đọc tiếp

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).

Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)

Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không? (đừng bảo mình là áp dụng bđt AM-GM cho 3 số nhé! Vì ta đang chứng minh nó mà:)) 

Cập nhật: Đây là 1 cách mình vừa tìm ra:(dù ko chắc nhưng vẫn đăng để mọi người tìm lỗi cho mình:v)

Không mất tính tổng quát giả sử \(c=min\left\{a,b,c\right\}\).Ta có:

\(VT-VP=\frac{1}{3}\left(a+2b+3c\right)\left(a-b\right)^2+\frac{1}{3}\left(b+2c\right)\left(b-c\right)^2+\frac{1}{3}\left(c+2a\right)\left(c-a\right)^2+b\left(a-c\right)\left(b-c\right)\ge0\)

---------------------------------------------Bài viết vẫn còn tiếp tục cập nhật-------------------------------------------

 

0
2 tháng 10 2019

ok. Mình không nghĩ là toán 8 và thực sự chả hiểu j cả

5 tháng 1 2020

cả 1 màn hình , ko để ý sao đc =))

5 tháng 1 2020

๖²⁴ʱ๖ۣۜNαтʂυƙĭ ๖ۣۜSυbαɾυ™ ༉ Test BĐT một tí thôi. Đừng để ý.

21 tháng 10 2019

bđt \(\Leftrightarrow\)\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge3a^3b+3b^3c+3c^3a\)

Có: \(a^4+a^2b^2\ge2a^3b\) tương tự với b, c, do đó cần cm: \(a^2b^2+b^2c^2+c^2a^2\ge a^3b+b^3c+c^3a\)

\(\Leftrightarrow\)\(a^2b\left(b-a\right)+b^2c\left(c-b\right)+c^2a\left(a-c\right)\ge0\) (1) 

Do a,b,c vai trò như nhau nên giả sử \(0\le a\le b\le c\) ta có: 

\(c^2a\left(a-c\right)=c.c.a\left(a-c\right)\ge b.a.a\left(a-c\right)=a^2b\left(a-c\right)\)

\(\Rightarrow\)\(VT_{\left(1\right)}\ge a^2b\left(b-a\right)+b^2c\left(c-b\right)+a^2b\left(a-c\right)=a^2b\left(b-a+a-c\right)+b^2c\left(c-b\right)\)

\(=a^2b\left(b-c\right)-b^2c\left(b-c\right)=b\left(b-c\right)\left(a^2-bc\right)\)

Mà \(0\le a\le b\le c\) nên \(\hept{\begin{cases}b-c\le0\\a^2-bc\le0\end{cases}}\)\(\Rightarrow\)\(VT_{\left(1\right)}\ge b\left(b-c\right)\left(a^2-bc\right)\ge0\)

21 tháng 10 2019

Phùng Minh Quân vai trò của a,b,c không như nhau nhé

22 tháng 4 2020

Cách 3 :

\(a+b+c\ge2+abc\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge6+3abc\)

Từ điều kiện ta có thể suy ra : \(a+b+c\ge3\)

Từ đó ta có : \(6\le\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Đến đây ta cần chứng minh :     \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)+3abc\)

                                            \(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(Đây là hệ quả của Cô-si)

22 tháng 3 2020

Ta có: \(a^2+b^2+c^2\ge ab+bc+ac\ge3\sqrt[3]{a^2b^2+b^2c^2+c^2a^2}\)

=> \(\hept{\begin{cases}a^2+b^2+c^2\ge3\\1\ge abc\end{cases}}\)

Có:  \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3+6=9\)

=> \(a+b+c\ge3=2+1\ge2+abc\)

12 tháng 8 2019

cảm ơn bạn nhiều.Mong bạn giúp đỡ

bài lớp mấy vậy 

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

a,b,c khong am nen (ab+bc+ca)...>=9/4 co the dung don bien nhe ban

con cau tra loi thi khong bit

10 tháng 8 2019

nguyễn xuân trợ: bớt xàm đi bạn, cái bạn hỏi đã bảo chúng ta dùng phương pháp dồn biến rồi nha!